發(fā)布時(shí)間:2022-04-18 10:35:25
序言:寫(xiě)作是分享個(gè)人見(jiàn)解和探索未知領(lǐng)域的橋梁,我們?yōu)槟x了1篇的力學(xué)性能論文樣本,期待這些樣本能夠?yàn)槟峁┴S富的參考和啟發(fā),請(qǐng)盡情閱讀。
1實(shí)驗(yàn)部分
1.1材料與儀器
三乙胺(TEA),分析純;甲苯二異氰酸酯(TDI-80),化學(xué)純;聚己內(nèi)酯二醇(PCL220N)、二羥甲基丙酸(DMPA)、三羥甲基丙烷(TMP)、1,4-丁二醇(BDO)、環(huán)氧樹(shù)脂(E-44)、丙酮、松香均為工業(yè)級(jí)。D211-2水浴鍋;JJ-1型電動(dòng)攪拌器;XWW-20電子萬(wàn)能試驗(yàn)機(jī)。
1.2環(huán)氧樹(shù)脂和松香改性的TDI水性聚氨酯膠粘劑的合成
將一定量的PCL220N、TDI-80加入三口燒瓶中,在75~85℃反應(yīng)到一定程度后,加入一定量的擴(kuò)鏈劑BDO進(jìn)行擴(kuò)鏈約1.5h,再降溫至70℃左右,加DMPA(或E-44、TMP和DMPA),繼續(xù)反應(yīng)約4h至—NCO含量達(dá)到預(yù)定值后加入松香,攪拌均勻,然后冷卻至40℃,在高速攪拌下加入三乙胺水溶液中和、乳化,即得產(chǎn)品環(huán)氧樹(shù)脂和松香改性的TDI水性聚氨酯膠粘劑。
1.3力學(xué)性能的測(cè)試
材料的力學(xué)性能常用其拉伸強(qiáng)度來(lái)衡量。拉伸強(qiáng)度(TS)的測(cè)定:采用電子萬(wàn)能試驗(yàn)機(jī),將樣品制成啞鈴狀(樣品的有效長(zhǎng)度t為20mm,厚度為0.5mm,寬度W為10mm),在常溫,拉伸速率為100mm/min條件下進(jìn)行測(cè)定。其TS按下式計(jì)算[6-8]:TS=Fm/WT式中TS———拉伸強(qiáng)度,MPa;Fm———記錄的最大力,N;W———裁刀狹小平行部分寬度,mm;T———試驗(yàn)長(zhǎng)度部分的厚度,mm。
2結(jié)果與討論
2.1環(huán)氧樹(shù)脂用量對(duì)改性TDI水性聚氨酯膠粘劑力學(xué)性能的影響
當(dāng)不含松香和三羥甲基丙烷(TMP)時(shí),不同環(huán)氧樹(shù)脂用量對(duì)改性TDI水性聚氨酯膠粘劑力學(xué)性能的影響見(jiàn)圖1。由圖1可知,環(huán)氧樹(shù)脂的引入增加了水性聚氨酯的韌性,表現(xiàn)為軟而韌的特性。隨環(huán)氧樹(shù)脂含量的增加,拉伸強(qiáng)度均先增加,后降低,當(dāng)環(huán)氧樹(shù)脂用量為5.73%時(shí),改性TDI水性聚氨酯膠粘劑的拉伸強(qiáng)度達(dá)到最大,為1.94MPa。這是由于隨著環(huán)氧樹(shù)脂用量的增加,環(huán)氧樹(shù)脂(E-44)中的環(huán)氧基和羥基通過(guò)反應(yīng)將交聯(lián)點(diǎn)引入聚氨酯主鏈,提高了聚氨酯的交聯(lián)密度,同時(shí)聚氨酯分子鏈上苯環(huán)的數(shù)量也增加,從而使得改性TDI水性聚氨酯膠粘劑的拉伸強(qiáng)度增加;但是環(huán)氧樹(shù)脂含量增大到一定程度后,再繼續(xù)增大環(huán)氧樹(shù)脂含量時(shí),使聚氨酯的交聯(lián)密度提高,而親水性基團(tuán)的數(shù)量不變,這樣就降低了聚氨酯分子的親水性,從而使分散顆粒變大,乳液穩(wěn)定性下降,使得改性TDI水性聚氨酯膠粘劑的力學(xué)性能亦變差[6-7]。
2.2松香用量對(duì)改性TDI水性聚氨酯膠粘劑力學(xué)性能的影響
保持環(huán)氧樹(shù)脂(E-44)含量為5.73%,改變松香的用量進(jìn)行實(shí)驗(yàn),其中松香用量對(duì)改性TDI水性聚氨酯膠粘劑力學(xué)性能的影響見(jiàn)圖2。由圖2可知,隨松香含量的增加,其拉伸強(qiáng)度先增加,后降低。這是由于松香與聚氨酯有良好的相容性,可增加膠粘劑的塑性。當(dāng)體系中松香含量較低時(shí),松香所起的穩(wěn)定作用超過(guò)其增塑作用,造成膠膜的拉伸強(qiáng)度有稍許上升,當(dāng)松香含量增加到8.92%時(shí),改性TDI水性聚氨酯膠粘劑的拉伸強(qiáng)度達(dá)到最大,為2.38MPa;但是再繼續(xù)增加松香含量時(shí),松香所起的增塑作用遠(yuǎn)大于穩(wěn)定作用,從而造成拉伸強(qiáng)度快速下降[8]。
2.3三羥甲基丙烷(TMP)用量對(duì)改性TDI水性聚氨酯膠粘劑力學(xué)性能的影響
當(dāng)環(huán)氧樹(shù)脂含量為5.73%,松香含量為8.92%時(shí),不同TMP用量時(shí)對(duì)TDI水性聚氨酯膠粘劑力學(xué)性能的影響見(jiàn)圖3。由圖3可知,隨三羥甲基丙烷(TMP)含量的增加,拉伸強(qiáng)度先增加,后降低。這是由于TMP雖然不利于聚氨酯的結(jié)晶,但能顯著提高聚氨酯分子鏈的交聯(lián)度。隨TMP用量的增加,預(yù)聚體的內(nèi)交聯(lián)度增加,從而使得膠膜的拉伸強(qiáng)度較高,當(dāng)TMP用量為2.68%時(shí),產(chǎn)品的拉伸強(qiáng)度達(dá)到最大,為3.43MPa,同時(shí)曲線(xiàn)有一個(gè)明顯的屈服點(diǎn);而當(dāng)TMP用量超過(guò)2.68%時(shí),由于交聯(lián)度太大,預(yù)聚物難以乳化,不能形成穩(wěn)定的乳液[9]。
2.4n(—NCO)/n(—OH)比值對(duì)改性TDI水性聚氨酯膠粘劑力學(xué)性能的影響
當(dāng)環(huán)氧樹(shù)脂含量為5.73%,松香含量為8.92%,三羥甲基丙烷含量為2.68%時(shí),不同n(—NCO)/n(—OH)比值對(duì)改性TDI水性聚氨酯膠粘劑力學(xué)性能的影響見(jiàn)圖4。由圖4可知,隨n(—NCO)/n(—OH)比值的增加,拉伸強(qiáng)度先增加,主要是由于隨著n(—NCO)/n(—OH)比值的增大,分子鏈中含有氨基甲酸酯基、芳基、脲基等剛性基團(tuán)增加[10-12],當(dāng)n(—NCO)/n(—OH)=1.23時(shí),產(chǎn)品的拉伸強(qiáng)度達(dá)到最大為4.72MPa,當(dāng)n(—NCO)/n(—OH)比值大于1.23后,產(chǎn)品的拉伸強(qiáng)度隨著n(—NCO)/n(—OH)比值的增大而降低。
3結(jié)論
本實(shí)驗(yàn)合成了環(huán)氧樹(shù)脂和松香改性的TDI水性聚氨酯膠粘劑,主要對(duì)其力學(xué)性能做了簡(jiǎn)單的研究,結(jié)果表明,環(huán)氧樹(shù)脂、松香、TMP含量以及n(—NCO)/n(—OH)比值對(duì)環(huán)氧樹(shù)脂和松香改性的TDI水性聚氨酯膠粘劑的力學(xué)性能影響較大。當(dāng)環(huán)氧樹(shù)脂含量為5.73%,松香含量為8.92%,三羥甲基丙烷含量為2.68%,n(—NCO)/n(—OH)比值為1.23時(shí),TDI水性聚氨酯膠粘劑的拉伸強(qiáng)度達(dá)到最大值為4.72MPa。
作者:王孝華 李傳強(qiáng) 湯琪 牟元華 單位:重慶交通大學(xué)
1建構(gòu)主義理論及學(xué)生特點(diǎn)
1.1建構(gòu)主義理論
建構(gòu)主義理論創(chuàng)始人著名心理學(xué)家皮亞杰認(rèn)為,學(xué)生是教學(xué)關(guān)系中的主體,教學(xué)應(yīng)以學(xué)生為中心,教師應(yīng)引導(dǎo)學(xué)生積極主動(dòng)的探索、發(fā)現(xiàn)和對(duì)知識(shí)意義的主動(dòng)構(gòu)建[1]。皮亞杰認(rèn)為,教師是學(xué)生學(xué)習(xí)的促進(jìn)者,學(xué)生的學(xué)習(xí)是積極主動(dòng)且不斷地建構(gòu)認(rèn)知和知識(shí)結(jié)構(gòu)的過(guò)程。建構(gòu)主義理論認(rèn)為學(xué)習(xí)是學(xué)生在原有經(jīng)驗(yàn)的基礎(chǔ)上主動(dòng)進(jìn)行意義建構(gòu)的過(guò)程,這種過(guò)程要在實(shí)踐中或者在學(xué)生與環(huán)境的相互作用中通過(guò)新舊知識(shí)間反復(fù)的相互作用而建構(gòu)成的。在教學(xué)中教師不能把對(duì)知識(shí)的理解傳遞給學(xué)生,而是從學(xué)生原有的知識(shí)經(jīng)驗(yàn)出發(fā),引導(dǎo)學(xué)生從原有的知識(shí)經(jīng)驗(yàn)中生長(zhǎng)出新的知識(shí)經(jīng)驗(yàn),即教學(xué)的關(guān)鍵是向?qū)W生展示這些結(jié)論是如何得到的[2]。
1.2分析學(xué)生特點(diǎn)
現(xiàn)在的本科生自幼開(kāi)始接受傳統(tǒng)的以教師為主體的“填鴨式”教學(xué),基本未接受過(guò)“啟發(fā)式”教學(xué)等新的教學(xué)方法。他們?cè)诮?jīng)過(guò)嚴(yán)格的應(yīng)試教育和慘烈的高考競(jìng)爭(zhēng)后進(jìn)入大學(xué),逐漸放松了緊繃的神經(jīng),普遍失去了奮斗的目標(biāo)并且對(duì)學(xué)習(xí)漸漸放松。學(xué)生的狀態(tài)大體分為三類(lèi)[3]:(1)少數(shù)同學(xué)有長(zhǎng)期的規(guī)劃和學(xué)習(xí)目標(biāo),能夠自覺(jué)努力地學(xué)習(xí)。(2)多數(shù)同學(xué)比較茫然,沒(méi)有規(guī)劃也沒(méi)有努力的方向,隨波逐流,學(xué)習(xí)上敷衍了事。(3)極少數(shù)同學(xué)徹底放松,對(duì)學(xué)習(xí)和未來(lái)前途都漠不關(guān)心,認(rèn)為到了大學(xué)就應(yīng)該輕松自在地享受生活,花費(fèi)大量時(shí)間和精力去玩游戲或者談戀愛(ài),對(duì)學(xué)習(xí)完全是應(yīng)付甚至厭學(xué)情緒嚴(yán)重,即使不能畢業(yè)也毫不擔(dān)憂(yōu)。離開(kāi)了家長(zhǎng)的呵護(hù)和老師的督促,多數(shù)學(xué)生不能合理的安排自己的學(xué)習(xí)和生活,更不能保證學(xué)習(xí)態(tài)度和學(xué)習(xí)熱情。習(xí)慣了接受教師“消化”加工好的知識(shí)和方法,學(xué)生在大學(xué)的學(xué)習(xí)過(guò)程中對(duì)知識(shí)的歸納、總結(jié)能力以及在舊知識(shí)的基礎(chǔ)上生長(zhǎng)新知識(shí)點(diǎn)的建構(gòu)能力和知識(shí)的遷移能力比較差。鑒于學(xué)生學(xué)習(xí)能力、學(xué)習(xí)狀態(tài)和學(xué)習(xí)目標(biāo)大不相同,本課程在講授過(guò)程中,務(wù)必不能采用傳統(tǒng)的灌輸式教學(xué),應(yīng)該積極探討新的適合本課程的教學(xué)方法和手段。
2改革教學(xué)方法及評(píng)價(jià)考核
2.1樹(shù)立新的教學(xué)觀
現(xiàn)代教育學(xué)倡導(dǎo)“以教師為主導(dǎo),以學(xué)生為主體”的新型教育觀,對(duì)大學(xué)教育也同樣適用。在教學(xué)過(guò)程中,如何把以教師為主導(dǎo)的“教”與以學(xué)生為主體的“學(xué)”有效結(jié)合起來(lái);老師如何能夠引導(dǎo)學(xué)生在已掌握的知識(shí)和已有的生活經(jīng)驗(yàn)的基礎(chǔ)上構(gòu)建起新的知識(shí)增長(zhǎng)點(diǎn);結(jié)合本門(mén)課的特點(diǎn)和學(xué)生特點(diǎn),怎樣能夠更有效的引導(dǎo)學(xué)生學(xué)習(xí)本課等問(wèn)題都需要教師深刻思考。
2.2采用多種教學(xué)方法
本課程工程應(yīng)用性較強(qiáng),單純的講授知識(shí)點(diǎn),會(huì)增加學(xué)生理解的難度。多媒體課件的制作尤其重要,大量圖片、動(dòng)畫(huà)的運(yùn)用,能夠?qū)σ曈X(jué)、聽(tīng)覺(jué)形成有效沖擊,有助于學(xué)生將枯燥的知識(shí)形象化。在講解本門(mén)課程時(shí),應(yīng)較多的結(jié)合生活實(shí)際和工程實(shí)際,采用“舉例法、對(duì)比法”等教學(xué)方法,引導(dǎo)學(xué)生構(gòu)建新的知識(shí)要點(diǎn)。例如在講解脆性的章節(jié)時(shí),可以列舉二戰(zhàn)期間,美軍8艘自由輪因脆性斷裂問(wèn)題失事等歷史事件,形象具體的描述脆性的產(chǎn)生原因及危害,給學(xué)生直觀的印象。根據(jù)各部分的教學(xué)目標(biāo)和教學(xué)內(nèi)容,精心設(shè)定題目請(qǐng)同學(xué)來(lái)回答,也可以布置作業(yè)來(lái)引導(dǎo)學(xué)生完成,從而考查學(xué)生對(duì)知識(shí)的掌握程度。在這個(gè)步驟上可以“因材施教”,即對(duì)于學(xué)習(xí)目標(biāo)明確、學(xué)習(xí)能力突出的學(xué)生,給他們的題目或作業(yè)可以適當(dāng)拔高,難度或深度更加突出;對(duì)于多數(shù)同學(xué)來(lái)說(shuō),采用數(shù)量、難度普通的題目;對(duì)于厭學(xué)或者對(duì)學(xué)習(xí)漠不關(guān)心的學(xué)生來(lái)說(shuō),即要努力培養(yǎng)其學(xué)習(xí)積極性,又要嚴(yán)格作業(yè)的規(guī)范,明確告之不能完成作業(yè)就會(huì)影響期末成績(jī)的考核規(guī)定。由于《材料力學(xué)性能》涵蓋的概念較多,也可在進(jìn)行了一定的教學(xué)內(nèi)容后總結(jié)各知識(shí)點(diǎn),有利于學(xué)生深入理解。
2.3改革評(píng)價(jià)考核
對(duì)學(xué)生的評(píng)價(jià)考核,既要體現(xiàn)學(xué)生的學(xué)習(xí)能力的差別,又要體現(xiàn)其學(xué)習(xí)態(tài)度及平時(shí)表現(xiàn)的差別。這樣的評(píng)價(jià)考核要求僅憑期末一張?jiān)嚲硎遣荒芡瓿傻?。?duì)學(xué)習(xí)態(tài)度端正、學(xué)習(xí)目標(biāo)明確、學(xué)習(xí)能力突出的同學(xué),考核成績(jī)應(yīng)對(duì)其有所肯定;對(duì)于學(xué)習(xí)目標(biāo)不明確、隨大流的學(xué)生,在調(diào)動(dòng)其學(xué)習(xí)積極性的同時(shí),應(yīng)有平時(shí)表現(xiàn)的約束,督促其保持學(xué)習(xí)習(xí)慣;對(duì)于完全沒(méi)有學(xué)習(xí)目標(biāo)的同學(xué),在培養(yǎng)其學(xué)習(xí)興趣、督促其平時(shí)表現(xiàn)的同時(shí),教師要經(jīng)常找其談心,幫助他們培養(yǎng)學(xué)習(xí)習(xí)慣。筆者根據(jù)多年教授《材料力學(xué)性能》課程的經(jīng)驗(yàn),建議期末試卷中增加附加題,得分以附加題目分值的40%計(jì)入總分;增加平時(shí)表現(xiàn)分?jǐn)?shù),建議占總分30%比例,70%比例為卷面成績(jī)。增加平時(shí)出勤率的檢查,該門(mén)課教學(xué)時(shí)長(zhǎng)內(nèi)累計(jì)曠課次數(shù)達(dá)5次及以上的同學(xué),建議取消考試資格,重修后再參加考試。這些措施對(duì)優(yōu)秀學(xué)生有鼓勵(lì)作用,并且能督促學(xué)生出勤、端正其學(xué)習(xí)態(tài)度。
3優(yōu)化教學(xué)內(nèi)容
很多版本的《材料力學(xué)性能》教材是基于金屬材料板塊編寫(xiě)的,已經(jīng)不再適應(yīng)材料一級(jí)學(xué)科的教學(xué)要求,優(yōu)化教學(xué)內(nèi)容需要對(duì)三方面進(jìn)行改革。
3.1修訂教學(xué)大綱
復(fù)合材料是一種較為新興的材料,與金屬材料和無(wú)機(jī)非金屬材料息息相關(guān)。隨著復(fù)合材料的進(jìn)一步發(fā)展,它與高分子材料的關(guān)系也會(huì)越來(lái)越密切。修訂復(fù)合材料專(zhuān)業(yè)教學(xué)大綱,既要滿(mǎn)足兼顧復(fù)合材料、金屬材料、無(wú)機(jī)非金屬材料和高分子材料的共性要求,又要滿(mǎn)足以介紹金屬材料和復(fù)合材料特性為主、以介紹無(wú)機(jī)非金屬材料和高分子材料特性為輔的教學(xué)要求,且需要將各類(lèi)材料有機(jī)的協(xié)調(diào)起來(lái)并融合到各個(gè)章節(jié)中去。在學(xué)習(xí)本門(mén)課程之前,學(xué)生應(yīng)該學(xué)習(xí)了《材料科學(xué)基礎(chǔ)》《材料力學(xué)》和《工程力學(xué)》,對(duì)于已學(xué)知識(shí)可以略講或不講,達(dá)到節(jié)約課時(shí)的目的。
3.2編寫(xiě)適合本專(zhuān)業(yè)的《材料力學(xué)性能》教材
《材料力學(xué)性能》所包含的概念公式較多,公式推導(dǎo)步驟也很繁瑣。在編寫(xiě)教材的時(shí)候,既要注意到本課程與其他課程的聯(lián)系,又要減少公式的推導(dǎo)步驟。太多的公式推導(dǎo)不利于學(xué)生對(duì)知識(shí)點(diǎn)的理解,不必要求學(xué)生掌握公示的推導(dǎo)過(guò)程。編寫(xiě)適合本專(zhuān)業(yè)的教材,難點(diǎn)是如何體現(xiàn)知識(shí)點(diǎn)的實(shí)際應(yīng)用。例如講授冷脆性時(shí),可結(jié)合《金屬材料與熱處理》中鋼的常存元素為開(kāi)篇導(dǎo)語(yǔ),復(fù)習(xí)五種常存元素對(duì)力學(xué)性能的影響。另外,還可以配圖且采用小號(hào)字做知識(shí)延伸,將與材料力學(xué)性能有關(guān)的著名歷史事件和日常生活的事例與本課程結(jié)合起來(lái)。例如泰坦尼克號(hào)的沉沒(méi),就是由于當(dāng)時(shí)冶煉技術(shù)落后,鋼板中的硫元素過(guò)多從而造成材料具有較高的冷脆性,在船體撞擊冰山后導(dǎo)致了船體破碎、快速沉沒(méi)等內(nèi)容。這些看似不重要的知識(shí)延伸能都?jí)蛑卑椎恼宫F(xiàn)各知識(shí)點(diǎn)的工程背景,使知識(shí)不再抽象,調(diào)動(dòng)了學(xué)生的學(xué)習(xí)積極性。
3.3整合實(shí)驗(yàn)課程內(nèi)容
現(xiàn)行教材中涉及材料力學(xué)性能的實(shí)驗(yàn)總共三個(gè),“拉壓實(shí)驗(yàn)”、扭轉(zhuǎn)實(shí)驗(yàn)和彎曲實(shí)驗(yàn)。這樣的實(shí)驗(yàn)安排容易使學(xué)生將材料的各種性能割裂開(kāi)來(lái),認(rèn)為各種力學(xué)性能的檢測(cè)方法是彼此獨(dú)立的[4]。雖然各種力學(xué)性能檢測(cè)方法的適用范圍、操作方法不同,但可以起到相互補(bǔ)充的作用。只有將不同的測(cè)試方法有機(jī)的結(jié)合起來(lái),才能更好地理解材料力學(xué)性能。所以,該課程將三個(gè)實(shí)驗(yàn)合并為“材料性能綜合實(shí)驗(yàn)”,安排在整體課程之后。此外,精心設(shè)計(jì)實(shí)驗(yàn)過(guò)程,合理安排實(shí)驗(yàn)報(bào)告的知識(shí)點(diǎn)等,都有助于調(diào)動(dòng)學(xué)生實(shí)驗(yàn)課的積極性,從而形象直觀的理解《材料力學(xué)性能》。
4結(jié)語(yǔ)
《材料力學(xué)性能》課程改革進(jìn)行了多年,收效甚微。深化該課程的教學(xué)改革,不能僅停留在某一方面。探討行之有效的教學(xué)方法,就要全面分析現(xiàn)在學(xué)生特點(diǎn)、結(jié)合現(xiàn)代教育理論、結(jié)合現(xiàn)代教學(xué)手段并對(duì)課程內(nèi)容和教學(xué)大綱進(jìn)行相應(yīng)的調(diào)整。經(jīng)過(guò)兩年的探討和教改嘗試,復(fù)合材料專(zhuān)業(yè)《材料力學(xué)性能》的課改已經(jīng)取得顯著的成效,學(xué)生的學(xué)習(xí)積極性和對(duì)知識(shí)的掌握程度都有明顯提高。在后續(xù)的教學(xué)過(guò)程中,我們將對(duì)新發(fā)現(xiàn)的問(wèn)題繼續(xù)進(jìn)行改革,并以此課程為試點(diǎn),逐漸推廣并形成一套成熟完善的教學(xué)體系。
作者:張振亞 陳剛 楊睿 趙玉濤 單位:江蘇大學(xué)材料學(xué)院
鋁及鋁合金材料具有密度低、強(qiáng)度高、導(dǎo)熱性好、斷裂韌性高等優(yōu)點(diǎn)[1],已經(jīng)廣泛應(yīng)用于航空航天和交通運(yùn)輸?shù)刃袠I(yè).近年來(lái),中國(guó)飛速發(fā)展的飛機(jī)和高鐵制造行業(yè),對(duì)性能優(yōu)良鋁合金材料的需求越來(lái)越大.AlCuMg硬鋁合金是一種室溫性能優(yōu)良的高強(qiáng)鋁合金,但因其焊接性能不佳,從而限制了其在工程中的應(yīng)用.?dāng)嚢枘Σ梁福?-4]和激光焊[5-6]的出現(xiàn)在較大程度上改善了AlCuMg硬鋁合金的焊接質(zhì)量問(wèn)題.然而,這兩種焊接方法的設(shè)備成本都很高,在發(fā)展中國(guó)家難以得到普及.因此,傳統(tǒng)的交流TIG焊焊接方法依然具有較高的研究?jī)r(jià)值.已有研究[7-10]表明,AlCuMg硬鋁合金TIG焊焊接接頭主要存在焊接熱裂紋、焊接接頭軟化、氣孔和焊接變形等缺陷.本文采用典型的AlCuMg硬鋁合金(2A12)進(jìn)行了焊接實(shí)驗(yàn).文獻(xiàn)[7]表明,焊接硬鋁合金2A12時(shí)主要采用抗裂性較好的ER4145、ER4043或BJ380A焊絲.其中,ER4145(Al10Si4Cu)焊絲的抗熱裂能力很強(qiáng),但焊絲及焊縫的延性很差.ER4043(Al5SiTi)焊絲的抗熱裂能力較強(qiáng),形成的焊縫金屬的延性也較好.當(dāng)ER4043焊絲用于鎢極氬弧焊時(shí),能有效防止焊縫金屬產(chǎn)生結(jié)晶裂紋,但該焊絲抑制近縫區(qū)母材產(chǎn)生液化裂紋的能力較差.BJ380A(Al5Si2CuTiB)焊絲的主要成分與ER4043(Al5SiTi)焊絲基本相同,而且添加了較多的Cu元素及適量的B元素,因此,BJ380A焊絲能很好地防止焊縫的結(jié)晶裂紋以及近縫區(qū)液化裂紋的產(chǎn)生,但該焊絲在市場(chǎng)上的銷(xiāo)量非常小,很難購(gòu)買(mǎi)到合格的產(chǎn)品.綜合比較后,本文選用了容易購(gòu)買(mǎi)的ER4043焊絲.選用ER4043焊絲的另一個(gè)優(yōu)點(diǎn)是在焊接過(guò)程中,母材中的部分Cu、Mg等合金元素可以過(guò)渡到焊縫中,使焊縫金屬產(chǎn)生微合金化.已有研究[11]表明,微合金化能夠增加由ER4043焊絲焊接得到的焊接接頭的強(qiáng)度和塑性.本文將熱影響區(qū)中的軟化區(qū)域稱(chēng)為“過(guò)時(shí)效區(qū)”,而將熱影響區(qū)中的硬化區(qū)域稱(chēng)為“固溶區(qū)”.
1實(shí)驗(yàn)材料及方法
實(shí)驗(yàn)?zāi)覆臑?A12硬鋁合金,且其熱處理狀態(tài)為T(mén)4態(tài),即經(jīng)過(guò)了固溶(495~505℃)+自然時(shí)效處理.試板尺寸為150mm×60mm×4mm.實(shí)驗(yàn)采用ER4043焊絲,且其直徑為12mm.母材與焊材的化學(xué)成分如表1所示.由于焊絲中Si元素的含量較高,可以有效地抑制焊接熱裂紋的產(chǎn)生.采用自動(dòng)送絲機(jī)構(gòu)和自動(dòng)行走機(jī)構(gòu)配合交流TIG焊接電源進(jìn)行焊接實(shí)驗(yàn).在焊接過(guò)程中,利用琴鍵式卡具強(qiáng)制固定試板.焊前對(duì)母材坡口周?chē)M(jìn)行機(jī)械清理,同時(shí)注意保持焊絲的潔凈.試板的坡口角度為60°,在焊接過(guò)程中需要使用引弧板和收弧板,且試板背面需加散熱銅墊板.實(shí)驗(yàn)中采用單面單層焊接工藝.其中,焊接電流為140A;焊接電壓為17V;焊接速度為15cm/min;送絲速度為250cm/min;鎢極直徑為32mm.焊縫正反面成型照片如圖1所示.可見(jiàn),由ER4043焊絲焊接得到的焊接接頭成型良好.在外觀檢查合格后,再對(duì)焊接接頭進(jìn)行拉伸、硬度與金相試樣的制備.金相腐蝕劑采用Keller試劑(1mLHF+15mLHCl+25mLHNO3+95mLH2O).
2實(shí)驗(yàn)結(jié)果與分析
2.1硬度曲線(xiàn)
采用維氏硬度計(jì)測(cè)量焊接接頭的硬度曲線(xiàn),由于焊接接頭具有對(duì)稱(chēng)性,實(shí)驗(yàn)中只測(cè)量了焊接接頭一側(cè)的硬度值,結(jié)果如圖2所示.由圖2可見(jiàn),焊接接頭的硬度曲線(xiàn)中存在兩個(gè)低點(diǎn),一個(gè)位于熱影響區(qū)的過(guò)時(shí)效區(qū),另一個(gè)位于焊縫區(qū).處于熱影響區(qū)的固溶區(qū)的硬度值得到了提高,且?guī)缀跖c母材的硬度水平相近,且固溶區(qū)與母材的硬度均約為140HV.近縫區(qū)的硬度值朝著熔合線(xiàn)方向呈現(xiàn)出較為劇烈的下降趨勢(shì),且近縫區(qū)的硬度從120HV下降到了90HV左右.熔合線(xiàn)區(qū)的硬度約為95HV.焊縫中心的硬度約為90HV,故該區(qū)硬度約為母材硬度的65%.處于熱影響區(qū)的過(guò)時(shí)效區(qū)硬度約為120HV,且該區(qū)硬度約為母材硬度的86%.
2.2顯微組織
圖3為焊接接頭各區(qū)域的顯微組織.圖3a為焊接接頭的母材的顯微組織.可見(jiàn),該區(qū)域晶粒大小均勻,變形程度一致,并沿軋制方向有序排列.母材基體上散落分布著一些較大的黑色顆粒,這些黑色顆粒主要為固溶時(shí)未溶入母材的粗大S相(Al2CuMg)和雜質(zhì).圖3b為位于熱影響區(qū)中的固溶區(qū)的顯微組織.可見(jiàn),經(jīng)腐蝕后該區(qū)域的金相圖片發(fā)黑,且粗大黑色顆粒略微長(zhǎng)大.造成固溶區(qū)金相圖片發(fā)黑的原因是在焊接過(guò)程中,由于該區(qū)域溫度高于人工時(shí)效溫度,但是低于母材固溶溫度,基體中的Cu原子發(fā)生聚集,使得過(guò)渡相(S′相)轉(zhuǎn)變?yōu)榇执蟮腟相,即出現(xiàn)過(guò)時(shí)效現(xiàn)象.這些彌散分布在基體中的S相被腐蝕劑腐蝕后會(huì)變黑,因此,固溶區(qū)的金相圖片也同樣發(fā)黑.另外,S相生成的同時(shí)基體也會(huì)變軟,因而在金相試件的制備過(guò)程中很容易產(chǎn)生劃痕.圖3c為位于熱影響區(qū)的固溶區(qū)的顯微組織.可見(jiàn),該區(qū)域晶粒變形程度低于母材,但依然沿著軋制方向有序排列.該區(qū)域基體中散落分布的粗大顆粒進(jìn)一步長(zhǎng)大并發(fā)生聚集.在焊接過(guò)程中,固溶區(qū)溫度達(dá)到了母材的固溶溫度,但是低于母材的固相線(xiàn)溫度,因而平衡相(S相)重新溶入基體,并在冷卻后形成了過(guò)飽和固溶體.隨后在焊后自然時(shí)效過(guò)程中析出S′相.經(jīng)過(guò)上述過(guò)程,該區(qū)域相當(dāng)于經(jīng)歷了一次固溶處理,強(qiáng)度能夠得到恢復(fù),因此,該區(qū)域稱(chēng)為固溶區(qū).圖3d為近縫區(qū)的顯微組織.可見(jiàn),該區(qū)域晶粒呈等軸狀,并未出現(xiàn)明顯長(zhǎng)大的晶粒.該區(qū)域發(fā)生了明顯的晶界液化現(xiàn)象,散落分布的黑色顆粒已經(jīng)全部溶入基體中.在焊接過(guò)程中,該區(qū)域溫度達(dá)到了母材的固相線(xiàn)溫度,因而可使母材中的低熔點(diǎn)共晶體和散落分布的粗大顆粒相發(fā)生熔化,而熔化后的低熔點(diǎn)共晶體會(huì)聚集到晶界,形成了粗大共晶體,從而降低了基體中合金元素的含量.越靠近焊縫,基體承受的溫度越高,晶界形成的低熔點(diǎn)共晶體也就越多,基體中的合金元素含量也就越低,基體強(qiáng)度也就越低,因此,在硬度曲線(xiàn)上表現(xiàn)出硬度急劇下降的趨勢(shì).同時(shí),雖然近縫區(qū)溫度達(dá)到了母材的固相線(xiàn)溫度,但是由于母材中由各種合金元素形成的彌散分布的細(xì)小強(qiáng)化相顆粒較多,限制了晶界的大范圍移動(dòng),因而晶界只能進(jìn)行平直化運(yùn)動(dòng),因此,晶粒并未大幅度長(zhǎng)大,只是形成了正常大小的圓潤(rùn)等軸晶.圖3e為靠近熔合線(xiàn)的焊縫組織.可見(jiàn),此區(qū)域?yàn)橹鶢罱M織,形成原因是在結(jié)晶過(guò)程中,該區(qū)域的溫度梯度很大,晶粒平行于溫度梯度方向的生長(zhǎng)速度較快,而垂直于溫度梯度方向的生長(zhǎng)速度較慢,因此,最終形成了朝焊縫中心生長(zhǎng)的柱狀晶.圖3f為焊縫中心的顯微組織,該區(qū)域呈現(xiàn)出明顯的枝晶組織,晶界處出現(xiàn)了大量低熔點(diǎn)共晶體聚集的現(xiàn)象.由于焊絲中的Si含量很高,在焊縫金屬結(jié)晶凝固的過(guò)程中,Si元素和從母材中過(guò)渡而來(lái)的Cu、Mg等合金元素將會(huì)被排擠到晶界,因而在晶界形成大量的低熔點(diǎn)共晶體.這些低熔點(diǎn)共晶體一方面能夠改善焊接接頭的抗結(jié)晶裂紋能力,但另一方面也會(huì)降低焊接接頭的塑性.
2.3TEM分析
圖4為處于熱影響區(qū)的固溶區(qū)的透射電子顯微(TEM)圖像.由圖4可以觀察到大量均勻分布的S′相,這些S′相是在固溶后的自然時(shí)效階段形成的,可以對(duì)基體起到有效的強(qiáng)化作用.固溶區(qū)的脫溶序列可以表示為GP區(qū)—S″—S′—S(Al2CuMg)固溶區(qū)在受到焊接熱循環(huán)作用后,基體中的平衡相(S相)會(huì)發(fā)生溶解,而分解出來(lái)的Cu、Mg原子將會(huì)重新固溶到基體中形成過(guò)飽和固溶體.隨著溫度的下降,過(guò)飽和固溶體中的Cu、Mg原子將會(huì)發(fā)生聚集,依次形成GP區(qū)、S″相和S′相.S′相為非平衡組織,是基體快速冷卻后形成的可以在室溫下長(zhǎng)期存在的強(qiáng)化相,且與基體存在部分共格關(guān)系,因此,S′相能夠產(chǎn)生較大的畸變能,并起到應(yīng)變強(qiáng)化、彌散強(qiáng)化和化學(xué)強(qiáng)化的作用.S′相不但可以提高焊接接頭的強(qiáng)度,而且也能提高其塑性,故S′相的強(qiáng)化效果最為理想.但是S′相在受熱時(shí)容易聚集轉(zhuǎn)變成S相,S相的尺寸較為粗大,與基體無(wú)共格結(jié)合,故其強(qiáng)化效果大大降低.這就是處于熱影響區(qū)的過(guò)時(shí)效區(qū)硬度低于母材和固溶區(qū)的原因.
2.4拉伸實(shí)驗(yàn)
焊接接頭的拉伸實(shí)驗(yàn)結(jié)果如表2所示.在拉伸實(shí)驗(yàn)中,拉伸試件大多斷裂于焊縫中心區(qū)域.由表2可見(jiàn),焊接接頭的平均抗拉強(qiáng)度約為270MPa,為母材平均抗拉強(qiáng)度的60%.焊接接頭的斷后伸長(zhǎng)率為65%,為母材的斷后伸長(zhǎng)率為176%.因此,焊接接頭的平均抗拉強(qiáng)度和斷后伸長(zhǎng)率均大幅度低于母材.
2.5SEM與EDS分析
對(duì)近縫區(qū)和焊縫區(qū)的低熔點(diǎn)共晶體進(jìn)行掃描電子顯微(SEM)觀察和能譜(EDS)分析,結(jié)果分別如圖5和表3所示.圖5a為近縫區(qū)晶界共晶體的SEM圖像,可見(jiàn)亮灰色共晶體沿著晶界斷續(xù)分布(如圖5a中A區(qū)所示).結(jié)合能譜分析結(jié)果可知,該區(qū)域Cu元素的含量高達(dá)2671%,導(dǎo)致基體強(qiáng)度會(huì)由于Cu元素含量的急劇降低而隨之降低.同時(shí),存在于近縫區(qū)晶界的大量低熔點(diǎn)共晶體也會(huì)增加近縫區(qū)的液化裂紋敏感性.圖5b~d為焊縫組織中具有不同形貌的低熔點(diǎn)共晶體的SEM圖像.結(jié)合表5中的EDS數(shù)據(jù)可知,由于這些共晶體的Cu、Mg和Si元素含量各不相同,因此,這些共晶體應(yīng)該是由不同成分的組元構(gòu)成的低熔點(diǎn)共晶體.由圖5b~d可見(jiàn),焊縫組織存在大量的低熔點(diǎn)共晶體.在這些共晶體的共同作用下,焊縫金屬在結(jié)晶過(guò)程中具有“愈合”作用,能很好地抑制結(jié)晶裂紋現(xiàn)象,但其塑性變形能力較差.這是因?yàn)樵诤缚p凝固后期,如果晶界處存在的低熔點(diǎn)共晶體較少,則容易被焊接拉應(yīng)力拉開(kāi)形成裂紋;如果晶界存在較多的低熔點(diǎn)共晶體,則被拉開(kāi)的晶界可以及時(shí)得到足夠的液體(低熔點(diǎn)共晶體)來(lái)補(bǔ)充,即起到“愈合”作用.
3結(jié)論
AlCuMg硬鋁合金焊接接頭的組織和性能變化較為復(fù)雜,焊接接頭的各個(gè)區(qū)域均具有各自鮮明的特點(diǎn),且AlCuMg硬鋁合金焊接接頭的焊接性能較差.本文選用ER4043焊絲對(duì)AlCuMg硬鋁合金進(jìn)行焊接,并研究了所得焊接接頭的組織與性能.通過(guò)以上實(shí)驗(yàn)分析,可以得出如下結(jié)論:1)在焊接接頭的過(guò)時(shí)效區(qū),由于S′相轉(zhuǎn)變?yōu)閺?qiáng)化效果較差的S相,因此,該區(qū)域硬度值大幅度下降.2)焊后焊接接頭的固溶區(qū)強(qiáng)度可以自行恢復(fù),且在該區(qū)域能夠觀察到大量的S′強(qiáng)化相.3)近縫區(qū)晶界存在大量富含Cu元素的低熔點(diǎn)共晶體聚集現(xiàn)象,造成基體中合金元素的含量下降,并對(duì)基體硬度產(chǎn)生了明顯的影響.4)利用ER4043焊絲焊接得到的焊縫組織存在大量的低熔點(diǎn)共晶體,這些低熔點(diǎn)共晶體在結(jié)晶過(guò)程中可以產(chǎn)生“愈合”作用,能夠有效地抑制結(jié)晶裂紋,但同時(shí)也會(huì)降低焊縫的塑性.
作者:劉政軍 劉繼國(guó) 蘇允海 單位:沈陽(yáng)工業(yè)大學(xué) 材料科學(xué)與工程學(xué)院
1實(shí)驗(yàn)材料和實(shí)驗(yàn)方法
1.1材料的制備
實(shí)驗(yàn)材料以鑄造高純鋁(純度為99.99%)作為實(shí)驗(yàn)對(duì)象。將材料加工為尺寸為15mm×15mm×90mm的長(zhǎng)方體試樣。將試樣放入等通道角擠壓模具中,采用石墨潤(rùn)滑劑,以1mm·s-1的速度,進(jìn)行多道次的室溫ECAP變形。其中ECAP模具通道的內(nèi)角φ=90°,外角Ψ=20°。采用Bc路徑反復(fù)擠壓1~8道次。采用C路徑反復(fù)擠壓1~4道次。Bc路徑是指前一次擠出的試樣按同一方向旋轉(zhuǎn)90°后進(jìn)入下一次擠壓。C路徑是指前一次擠出的試樣按同一方向旋轉(zhuǎn)180°后進(jìn)入下一次擠壓。
1.2拉伸試驗(yàn)
對(duì)高純鋁多道次等通道角擠壓后的試樣進(jìn)行拉伸性能測(cè)試,按照GB/T228.1—2010[9]制備拉伸試樣,采用200kN型電子萬(wàn)能試驗(yàn)機(jī)進(jìn)行拉伸試驗(yàn)。
1.3硬度實(shí)驗(yàn)
金屬材料的硬度是其力學(xué)性能的主要參考之一,試樣的晶粒越細(xì),硬度越高,所以通過(guò)硬度值也可以反映出材料晶粒的尺寸變化。切取硬度試樣,采用FM-700數(shù)字顯微硬度計(jì),對(duì)擠壓后的試樣進(jìn)行顯微硬度測(cè)試。
1.4熱穩(wěn)定性實(shí)驗(yàn)
為檢測(cè)高純鋁經(jīng)過(guò)ECAP實(shí)驗(yàn)后的熱穩(wěn)定性,設(shè)計(jì)兩組實(shí)驗(yàn):第1組將1~4道次的試樣進(jìn)行加熱到100℃保溫1h的退火實(shí)驗(yàn);第2組將1~4道次的試樣進(jìn)行加熱到200℃保溫1h的退火實(shí)驗(yàn),對(duì)退火后的試樣進(jìn)行拉伸試驗(yàn)和維氏硬度實(shí)驗(yàn)。
2實(shí)驗(yàn)結(jié)果與分析
2.1抗拉強(qiáng)度和伸長(zhǎng)率分析
高純鋁經(jīng)過(guò)ECAP實(shí)驗(yàn)后的拉伸力學(xué)性能見(jiàn)表1??梢?jiàn)高純鋁的抗拉強(qiáng)度在經(jīng)過(guò)擠壓后有了明顯的提高,抗拉強(qiáng)度從第1道次到第3道次不斷提高,升高趨勢(shì)相似,在第3道次達(dá)到最大值為108MPa。在第4道次時(shí)抗拉強(qiáng)度出現(xiàn)下降趨勢(shì),如圖1所示。這應(yīng)該是由于第1次變形后高純鋁晶體內(nèi)部晶粒減小且產(chǎn)生大量位錯(cuò),使抗拉強(qiáng)度大幅度提高,隨著應(yīng)變量增加,抗拉強(qiáng)度不斷提高。到擠壓至第4道次時(shí),位錯(cuò)被堆積和湮滅,位錯(cuò)數(shù)量有所下降,且保持穩(wěn)定,進(jìn)而出現(xiàn)動(dòng)態(tài)回復(fù)和動(dòng)態(tài)再結(jié)晶使強(qiáng)度下降[9]。在5道次擠壓后,抗拉強(qiáng)度比前一道次略有提升,但隨后幾道次的抗拉強(qiáng)度還是呈下降趨勢(shì),在第6道次達(dá)到最低,為81MPa。高純鋁經(jīng)過(guò)ECAP擠壓變形后的伸長(zhǎng)率在經(jīng)過(guò)第1道次的擠壓后明顯下降,隨著擠壓道次的增加,試樣的伸長(zhǎng)率略有提升,但總體呈下降趨勢(shì)并逐漸趨于穩(wěn)定。這是因?yàn)榻?jīng)過(guò)第1道次擠壓后高純鋁內(nèi)部產(chǎn)生大量?jī)?nèi)應(yīng)力,導(dǎo)致伸長(zhǎng)率下降。
2.2硬度分析
經(jīng)過(guò)Bc路徑ECAP第4道次的擠壓后高純鋁的硬度從最初的43.38HV提高到59.8HV,提高了37.8%。同樣,C路徑ECAP擠壓至第4道次后,硬度也達(dá)到了54.6HV,提高了25.8%。可見(jiàn)從1道次至4道次晶粒在不斷地細(xì)化。從圖2看出,對(duì)比Bc路徑和C路徑可以發(fā)現(xiàn)在第3和第4道次擠壓后,Bc路徑擠壓得到的硬度比C路徑擠壓后的硬度高。Bc路徑在第2到3道次之間硬度劇烈提高,相比C路徑硬度則均勻升高。
2.3熱穩(wěn)定性分析
高純鋁熱穩(wěn)定性的檢測(cè)是通過(guò)對(duì)加熱處理過(guò)的高純鋁進(jìn)行拉伸試驗(yàn)和硬度測(cè)試。圖3和圖4分別是Bc路徑和C路徑制得的高純鋁退火后硬度,從圖中可以得出,經(jīng)過(guò)加熱到100和200℃進(jìn)行退火后,試樣的硬度明顯下降。對(duì)比可以發(fā)現(xiàn),經(jīng)Bc路徑擠壓的試樣退火后,第3和第4道次比前兩道次硬度下降的幅度大。而C路徑則是第2和第4道次的硬度下降幅度大,而其他兩道次退火后硬度下降較小。對(duì)比加熱溫度可以發(fā)現(xiàn),加熱到100和200℃后退火,對(duì)退火后的硬度沒(méi)有太大的影響。圖5是擠壓過(guò)第5道次至第8道次的高純鋁試樣,從圖5中可以看到:高純鋁在經(jīng)過(guò)較高道次的ECAP擠壓后,試樣經(jīng)過(guò)200℃退火后,其抗拉強(qiáng)度下降;試樣經(jīng)過(guò)100℃退火后,抗拉強(qiáng)度在第6和第7道次均高于未經(jīng)熱處理的擠壓試樣。對(duì)比100和200℃退火,試樣經(jīng)200℃退火后的抗拉強(qiáng)度明顯下降,下降幅度比100℃退火后大很多。可見(jiàn)退火溫度不同對(duì)抗拉強(qiáng)度的影響不同。
3結(jié)論
(1)高純鋁在ECAP第3道次后抗拉強(qiáng)度達(dá)到最大值為108MPa,伸長(zhǎng)率在第1道次后劇烈下降,由44%下降至18.3%,隨后抗拉強(qiáng)度下降,隨擠壓次數(shù)增加趨于穩(wěn)定。(2)高純鋁的硬度隨著擠壓道次的增加不斷上升,到4道次后,Bc路徑高純鋁硬度為59.8HV,C路徑高純鋁硬度為54.6HV。(3)退火后高純鋁的的硬度和抗拉強(qiáng)度都有所下降,不同的退火溫度對(duì)退火后硬度的影響幾乎相同,而對(duì)抗拉強(qiáng)度的影響差別較大。
作者:高松松 王進(jìn) 單位:青島理工大學(xué)
1實(shí)驗(yàn)方法
1.1原材料
①多聚甲醛,分析純,天津福晨化學(xué)試劑廠生產(chǎn);②苯酚,分析純,天津博迪化工有限公司生產(chǎn);③氨水,分析純,天津福晨化學(xué)試劑廠生產(chǎn)。
1.2熱固性酚醛樹(shù)脂的制備
根據(jù)反應(yīng)中引入催化劑的不同,酚醛樹(shù)脂可分為酸催化合成的熱塑性樹(shù)脂和堿催化合成的熱固性樹(shù)脂。其中,熱固性酚醛樹(shù)脂具有不溶不熔的特性。本文將使用熱固性酚醛樹(shù)脂為樹(shù)脂炭材料的前驅(qū)體,具體的合成工藝如下:將多聚甲醛與苯酚按照1∶1.3的摩爾比混合后,加入到三口燒瓶中;將三口燒瓶置于水浴爐中加熱至65~95℃,同時(shí)加入少量NH3·H2O,保持反應(yīng)過(guò)程中體系的pH值在7.5~9.5;攪拌反應(yīng)一段時(shí)間后得到粘稠狀液體,即為熱固性酚醛樹(shù)脂。
1.3酚醛樹(shù)脂炭的制備
將合成的熱固性酚醛樹(shù)脂模壓固化(即樹(shù)脂注入模具中,160℃固化48h以上脫模),再置于電阻爐中,在氮?dú)獗Wo(hù)下進(jìn)行炭化處理(炭化溫度為850~900℃),得到酚醛樹(shù)脂炭材料。
1.4酚醛樹(shù)脂炭結(jié)構(gòu)與性能的表征
采用NETZSCHSTA409型熱重分析儀表征酚醛樹(shù)脂炭的前驅(qū)體———酚醛樹(shù)脂在N2氣氛下的熱失重行為。采用JSM6700型場(chǎng)發(fā)射掃描電鏡觀察酚醛樹(shù)脂炭的微觀形貌。采用RenishawInVia拉曼光譜儀分析酚醛樹(shù)脂炭的元素雜化態(tài)。采用CMT-5304電子萬(wàn)能試驗(yàn)機(jī)測(cè)定酚醛樹(shù)脂炭的壓縮強(qiáng)度。加載速率為0.5mm/min,試樣尺寸為10×10mm3。并通過(guò)試樣的壓縮應(yīng)力-應(yīng)變曲線(xiàn),分析試樣的斷裂失效機(jī)制。
2力學(xué)性能分析
2.1酚醛樹(shù)脂炭的微觀結(jié)構(gòu)
高聚物材料的熱分解溫度定義為失重10wt.%所對(duì)應(yīng)的溫度[11]。固化后的酚醛樹(shù)脂在N2氣氛中的熱失重曲線(xiàn),酚醛樹(shù)脂的熱分解溫度為239℃,失重5wt.%時(shí)的溫度為211℃,至850℃時(shí)的殘?zhí)柯蕿?0.7%;酚醛樹(shù)脂在237和543℃附近的兩個(gè)階段發(fā)生明顯的失重現(xiàn)象;600℃后,酚醛樹(shù)脂進(jìn)行結(jié)構(gòu)重排,有機(jī)芳環(huán)結(jié)構(gòu)逐漸向無(wú)機(jī)結(jié)構(gòu)演變。第一階段的失重是因?yàn)楣袒磻?yīng)過(guò)程中殘余的低分子物質(zhì)揮發(fā)及分子間的交聯(lián)縮合而引起的;第二階段的失重則是因?yàn)樽杂苫呀?、大量分子鏈斷裂、脫氫等非均相分解所致,該過(guò)程分解出CO、CO2、CH4等氣體,同時(shí)釋放大量的熱量。在1348cm-1附近出現(xiàn)代表sp3雜化的無(wú)序亂層炭結(jié)構(gòu)的D峰,而在1589cm-1附近出現(xiàn)代表sp2雜化的取向度較好的微晶石墨炭結(jié)構(gòu)的G峰。根據(jù)D峰與G峰的強(qiáng)度比值判斷材料中炭結(jié)構(gòu)的類(lèi)型。使用Origin8.0軟件計(jì)算兩峰的積分面積,得到ID/IG=2.15,大于1,表明酚醛樹(shù)脂炭主要以非晶炭結(jié)構(gòu)為主。從圖2(b)可以看出,酚醛樹(shù)脂炭主要由樹(shù)脂炭基體、微孔和微裂紋組成。酚醛樹(shù)脂在固化和炭化熱處理過(guò)程中出現(xiàn)小分子逃逸,因而在炭基體中留下大量微孔,微孔的孔徑為3~8μm。在炭化過(guò)程中酚醛樹(shù)脂內(nèi)部產(chǎn)生較大的熱應(yīng)力,在熱處理結(jié)束后未得到完全釋放,殘余應(yīng)力留在樹(shù)脂炭基體中,從而形成一些寬度為1~2μm的微裂紋。
2.2酚醛樹(shù)脂炭的壓縮性能
酚醛樹(shù)脂炭典型的壓縮應(yīng)力-應(yīng)變曲線(xiàn)酚醛樹(shù)脂炭的壓縮強(qiáng)度為8.58MPa,酚醛樹(shù)脂炭的壓縮過(guò)程主要為彈性變形區(qū),無(wú)屈服平臺(tái)區(qū)。彈性變形區(qū)主要受靜應(yīng)力影響,反映了炭泡沫泡孔結(jié)構(gòu)的強(qiáng)度特性,而屈服平臺(tái)區(qū)主要反映了微孔孔隙結(jié)構(gòu)被壓垮的過(guò)程[3]。酚醛樹(shù)脂炭的壓縮應(yīng)變較小,當(dāng)應(yīng)變達(dá)到4%左右,材料突然失效,曲線(xiàn)無(wú)屈服平臺(tái)區(qū),壓縮斷裂過(guò)程呈脆性斷裂模式;應(yīng)力-應(yīng)變曲線(xiàn)出現(xiàn)一些“臺(tái)階”(圖中箭頭所示區(qū)域),表明在受壓過(guò)程中,裂紋在材料內(nèi)部發(fā)生多次偏轉(zhuǎn)。由此可推測(cè)酚醛樹(shù)脂炭的斷裂過(guò)程(如圖4所示):酚醛樹(shù)脂在固化過(guò)程中殘存一定的內(nèi)應(yīng)力,其在炭化階段未得到完全釋放,并在材料內(nèi)部形成一定數(shù)目的微裂紋;這些微裂紋在受壓過(guò)程中不斷擴(kuò)展-連通,形成更大的裂紋;當(dāng)大裂紋在其生長(zhǎng)方向上遇到基體相中的微孔,發(fā)生裂紋偏轉(zhuǎn)和裂紋彎曲效應(yīng),并吸收少量裂紋擴(kuò)展能。由于樹(shù)脂炭基體的脆性較大,微孔的出現(xiàn)不足以吸收足夠的裂紋擴(kuò)展功,難以阻擋裂紋進(jìn)一步擴(kuò)展。隨著載荷的不斷增大,材料內(nèi)部的大量長(zhǎng)裂紋迅速擴(kuò)展-連通,致使其發(fā)生脆性斷裂,同時(shí)在應(yīng)力-應(yīng)變曲線(xiàn)上出現(xiàn)明顯的瞬間應(yīng)力衰減現(xiàn)象。通常情況下,吸收的總能量越低,材料的韌性越差。由圖3可計(jì)算出酚醛樹(shù)脂炭在壓縮過(guò)程中吸收的總能量為0.135MJ/m3。而多孔樹(shù)脂基炭泡沫斷裂韌性最差的試樣,其吸收的總能量為0.3018MJ/m3[3]。與該研究結(jié)果相比,樹(shù)脂炭在壓縮過(guò)程中吸收的總能量降低了55.3%以上。平臺(tái)區(qū)是吸收能量的主要階段,而樹(shù)脂炭的壓縮斷裂呈現(xiàn)脆性斷裂模式,其壓縮變形主要以彈性變形區(qū)為主,因此在斷裂過(guò)程中吸收的總能量較低,斷裂韌性較差。
3結(jié)論
(1)采用堿催化法合成的熱固性酚醛樹(shù)脂,其熱分解溫度為211℃;酚醛樹(shù)脂經(jīng)固化-高溫炭化熱處理形成了以非晶炭為主,含有樹(shù)脂炭基體、微孔和微裂紋的酚醛樹(shù)脂炭材料。(2)酚醛樹(shù)脂炭的壓縮強(qiáng)度為8.58MPa,應(yīng)變較小,僅為4%左右;壓縮應(yīng)力-應(yīng)變曲線(xiàn)以彈性變形區(qū)為主,壓縮斷裂特征為脆性斷裂模式。(3)酚醛樹(shù)脂炭的斷裂韌性較差,由于壓縮應(yīng)力-應(yīng)變曲線(xiàn)無(wú)屈服平臺(tái)區(qū),壓縮斷裂過(guò)程中吸收的總能量較小,僅為0.135MJ/m3。
作者:趙毓梅 單位:西北工業(yè)大學(xué)
1試驗(yàn)材料和方法
試樣采用980鋼試樣,尺寸為150mm×50mm×20mm,共制作4個(gè)試樣,打鋼印進(jìn)行標(biāo)記。試驗(yàn)使用爐膛為260mm×160mm×100mm的實(shí)驗(yàn)室箱式爐。熱處理工藝為調(diào)質(zhì),即860℃×0.5h水冷10s轉(zhuǎn)油冷至室溫+620℃×1h回火,開(kāi)爐門(mén)冷卻至室溫,工藝曲線(xiàn)如圖1所示。對(duì)1號(hào)試樣不進(jìn)行調(diào)質(zhì),對(duì)2號(hào)試樣進(jìn)行一次調(diào)質(zhì),3號(hào)試樣進(jìn)行兩次調(diào)質(zhì),4號(hào)試樣進(jìn)行三次調(diào)質(zhì),每次調(diào)質(zhì)工藝相同。試樣經(jīng)打磨、拋光、4%硝酸酒精侵蝕后,于高倍金相電子顯微鏡下觀察顯微組織。按照GB/T228.1—2010《拉伸試驗(yàn)第一部分:室溫試驗(yàn)方法》進(jìn)行試樣制作和拉伸試驗(yàn);按照GB/T229—2007《金屬材料夏比擺錘沖擊試驗(yàn)方法》進(jìn)行試樣制作和低溫沖擊試驗(yàn)。
2試驗(yàn)結(jié)果與討論
2.1調(diào)質(zhì)次數(shù)對(duì)力學(xué)性能的影響
980鋼經(jīng)過(guò)不同次數(shù)調(diào)質(zhì)后的力學(xué)性能如表1及圖2所示。結(jié)果表明,980鋼經(jīng)過(guò)第一次調(diào)質(zhì)后,強(qiáng)度顯著提高,但低溫沖擊吸收能量無(wú)明顯提高。980鋼經(jīng)過(guò)第二次調(diào)質(zhì),強(qiáng)度與第一次調(diào)質(zhì)相比無(wú)明顯變化,低溫沖擊吸收能量顯著提高。980鋼經(jīng)過(guò)第三次調(diào)質(zhì),強(qiáng)度與第一次調(diào)質(zhì)相比無(wú)明顯變化,低溫沖擊吸收能量略有降低。
2.2調(diào)質(zhì)次數(shù)對(duì)顯微組織的影響
為不同次數(shù)調(diào)質(zhì)態(tài)980鋼的顯微照片??梢钥闯?,980鋼未進(jìn)行調(diào)質(zhì)時(shí),組織為鐵素體,晶粒度級(jí)別為7.0級(jí),進(jìn)行第一次調(diào)質(zhì)后,組織為回火索氏體和殘留奧氏體,晶粒度級(jí)別為7.5級(jí),存在顆粒狀碳化物。經(jīng)過(guò)第二次調(diào)質(zhì),殘留奧氏體基本消失,為回火索氏體,晶粒度級(jí)別提高到8.0級(jí),存在少量顆粒狀碳化物。當(dāng)進(jìn)行第三次調(diào)質(zhì)時(shí),組織為回火索氏體和粒狀珠光體,晶粒度級(jí)別為8.0級(jí)?;鼗鹚魇象w是鐵素體與粒狀滲碳體的混合物?;鼗鹚魇象w使鋼的脆性降低,沖擊性能提高[3]。析出的細(xì)小顆粒狀碳化物,作為第二相質(zhì)點(diǎn),可以阻礙晶界的遷移長(zhǎng)大,所以,隨著調(diào)質(zhì)次數(shù)增加,晶粒細(xì)化。此外,淬火的冷卻過(guò)程存在形核和核心長(zhǎng)大的過(guò)程。淬火冷卻時(shí)間受到控制,新的晶粒沒(méi)有長(zhǎng)大到原始晶粒尺寸時(shí),重新進(jìn)行加熱后冷卻,再一次進(jìn)行形核和核心長(zhǎng)大,在原始晶粒中形成多個(gè)細(xì)小的晶粒,晶粒得到細(xì)化。鋼的沖擊韌性與晶粒大小有關(guān)[4],韌脆轉(zhuǎn)變溫度T與晶粒直徑d的關(guān)系可用公式T=K-lnd-1/3描述,因此,細(xì)化晶粒可以提高鋼的沖擊性能。從屈服和抗拉強(qiáng)度來(lái)看,經(jīng)過(guò)第二次調(diào)質(zhì),980鋼的屈服強(qiáng)度和抗拉強(qiáng)度明顯提高,這可能與晶粒得到細(xì)化有直接關(guān)系。塑性變形過(guò)程中,由外加切應(yīng)力直接引起滑移的晶粒只占少數(shù),多數(shù)晶粒的塑性變形是由前面晶粒中的位錯(cuò)塞積群的應(yīng)力集中所引起的,只有所有晶粒都進(jìn)行了塑性變形,才會(huì)引起塑性變形的宏觀效果,它的作用效果與晶粒尺寸有關(guān)??梢?jiàn),通過(guò)細(xì)化晶粒,可以提高屈服強(qiáng)度和抗拉強(qiáng)度。
3結(jié)論
1)980鋼經(jīng)過(guò)第一次調(diào)質(zhì),屈服強(qiáng)度和抗拉強(qiáng)度明顯提高,低溫沖擊吸收能量提高不明顯,顯微組織為回火索氏體和殘留奧氏體。經(jīng)過(guò)第二次調(diào)質(zhì),屈服和抗拉強(qiáng)度無(wú)明顯變化,低溫沖擊吸收能量顯著提高,顯微組織轉(zhuǎn)變?yōu)榛鼗鹚魇象w,晶界變得明顯,晶粒得到細(xì)化。經(jīng)過(guò)第三次調(diào)質(zhì),屈服強(qiáng)度、抗拉強(qiáng)度無(wú)明顯變化,低溫沖擊吸收能量略有降低,顯微組織為回火索氏體和粒狀珠光體。2)980鋼經(jīng)過(guò)兩次調(diào)質(zhì)處理后,力學(xué)性能顯著提高,效果最好。
作者:陳亮 單位:武漢船用機(jī)械有限責(zé)任公司
1力學(xué)性能試驗(yàn)研究
本實(shí)驗(yàn)所用的水平加載設(shè)備是美國(guó)MTS公司提供的動(dòng)力液壓伺服作動(dòng)器,此作動(dòng)器由MTS公司提供的FlexTestGT控制系統(tǒng)控制。同時(shí)FlexTestGT控制系統(tǒng)留有外部輸入信號(hào)的接口,這樣擬動(dòng)力子結(jié)構(gòu)實(shí)驗(yàn)中的數(shù)值子結(jié)構(gòu)計(jì)算程序和DSP中控制程序就能和FlexTestGT控制系統(tǒng)連接進(jìn)行數(shù)據(jù)信號(hào)交換。實(shí)驗(yàn)中使用的動(dòng)力液壓伺服作動(dòng)器在動(dòng)力加載時(shí)可以達(dá)到±1000kN,水平位移的范圍是±300mm。豎向力由4個(gè)750kN的靜力作動(dòng)器產(chǎn)生,整個(gè)豎向加載是自平衡裝置,大幅度的減少了設(shè)備的自重和加載過(guò)程中的摩擦力。本實(shí)驗(yàn)的試件為4件性能相同的新型高阻尼橡膠隔震支座,其平面尺寸和橡膠層數(shù)都為400mm×400mm×6層,橡膠每層厚度為20mm,橡膠層總厚度為120mm,橡膠的水平剪切彈性模量采用G12(1.2N/mm2)。
1.1試驗(yàn)方案
首先進(jìn)行順應(yīng)變加載實(shí)驗(yàn),實(shí)驗(yàn)中支座的豎向荷載為960kN(面荷載6N/mm2),并在實(shí)驗(yàn)中保持恒定。水平方向通過(guò)水平動(dòng)力液壓伺服作動(dòng)器輸入正弦激勵(lì)波,為了研究頻率對(duì)支座性能的影響,對(duì)3件新型高阻尼橡膠隔震支座分別輸入頻率為0.1Hz、0.3Hz、0.5Hz的正弦波,對(duì)于每一頻率的正弦波其振幅分別按100%、175%、250%應(yīng)變的順序進(jìn)行改變,每一應(yīng)變往返進(jìn)行6次。而每一振幅實(shí)驗(yàn)之間將支座靜置24h,使其能恢復(fù)到彈性狀態(tài)。其次,為了研究加載經(jīng)歷對(duì)新型高阻尼橡膠隔震支座的力學(xué)性能的影響,對(duì)未進(jìn)行過(guò)實(shí)驗(yàn)的1件新試件進(jìn)行逆應(yīng)變加載實(shí)驗(yàn)。實(shí)驗(yàn)中豎向荷載還是保持960kN不變,水平方向輸入頻率為0.5的正弦波,其振幅按250%、175%、100%應(yīng)變順序進(jìn)行改變,每一應(yīng)變往返進(jìn)行6次。同樣對(duì)于每一振幅實(shí)驗(yàn)之間將支座靜置24h,使其能恢復(fù)到彈性狀態(tài)。
1.2實(shí)驗(yàn)結(jié)果及分析
順應(yīng)變與逆應(yīng)變實(shí)驗(yàn)中得到的新型高阻尼橡膠隔震支座的滯回曲線(xiàn)如圖1所示。并且根據(jù)每一頻率下第2~第6回的滯回曲線(xiàn)按最大位移法計(jì)算在不同應(yīng)變下的等效水平剛度與等效阻尼系數(shù)。其等效水平剛度、等效阻尼系數(shù)和加載頻率、應(yīng)變的關(guān)系如圖2、圖3所示。從圖2中可以看出隨著加載頻率的增加,等效水平剛度有增加的趨勢(shì),大致上頻率每增加0.01Hz,其等效水平剛度增加0.042(kN/mm)。但是實(shí)驗(yàn)結(jié)果等效阻尼系數(shù)隨著頻率的變化幾乎沒(méi)有多大的變化,這說(shuō)明新型高阻尼橡膠隔震支座的阻尼性能是穩(wěn)定的,與激勵(lì)頻率的相關(guān)性小。同時(shí)從圖3中可以看出隨著應(yīng)變的增加,等效水平剛度與等效阻尼系數(shù)都變小。從逆應(yīng)變滯回曲線(xiàn)可以看出,當(dāng)新型高阻尼橡膠隔震支座首先經(jīng)歷了大應(yīng)變變形后,小應(yīng)變實(shí)驗(yàn)的初始剛度比順應(yīng)變實(shí)驗(yàn)結(jié)果降低了,同時(shí)等效水平剛度與等效阻尼系數(shù)也發(fā)生了變化。根據(jù)每一頻率下第二回至第六回的滯回曲線(xiàn)按最大位移法計(jì)算逆應(yīng)變實(shí)驗(yàn)的等效水平剛度和等效阻尼系數(shù),并與順應(yīng)變實(shí)驗(yàn)結(jié)果進(jìn)行對(duì)比,其結(jié)果如圖4所示??梢钥闯觯陧槕?yīng)變實(shí)驗(yàn)中100%、175%應(yīng)變的等效水平剛度比逆應(yīng)變分別高25%、19%,而250%應(yīng)變時(shí)兩者卻幾乎相同。對(duì)于等效阻尼系數(shù),逆應(yīng)變實(shí)驗(yàn)結(jié)果均比順應(yīng)變的實(shí)驗(yàn)結(jié)果小,100%、175%、250%應(yīng)變時(shí)分別小了7.3%、0.9%、16.9%。由此可見(jiàn)新型高阻尼橡膠隔震支座的等效水平剛度、等效阻尼系數(shù)與加載順序有很強(qiáng)的相關(guān)性。
2隔震性能分析研究
(1)力學(xué)模型。在分析中采用了10m高的混凝土橋墩,橋墩基礎(chǔ)的平面尺寸6.3m×6.3m,基礎(chǔ)高度為2.0m,橋墩的斷面尺寸為5.22m×2.4m,高度為9.5m,橋面的重量為714ton.實(shí)驗(yàn)的橋墩模型的1次振型為{0.08,0.133,0.991}T,其周期為1.27s,(2)橡膠隔震支座及其地震波。在本次分析使用的是板式橡膠支座NR,新型高阻尼橡膠隔震支座HDR.其平面尺寸都采用方形400mm×400mm,純橡膠層總厚度為120mm,橡膠的剪切彈性模量為1.2N/mm2。其175%應(yīng)變時(shí)的阻尼比設(shè)計(jì)值分別為0.04,0.21.采用針對(duì)2類(lèi)場(chǎng)地的地震波L2T1Soil2,其最大加速度峰值為0.22g,地震波的標(biāo)準(zhǔn)輸入時(shí)間間隔為ΔT=0.01.(3)實(shí)驗(yàn)結(jié)果及分析。10m高橋墩在L2T1Soil2地震波輸入條件下,2種支座的地震反應(yīng)滯回曲線(xiàn)如圖7所示。為了定量的評(píng)價(jià)其隔震效果,從分析結(jié)果中直接得橋墩頂部的最大位移,橋面的最大位移,橋面的最大加速度,同時(shí)通過(guò)計(jì)算求得橋墩底部的最大彎矩,結(jié)果如表1所示。分析結(jié)果表面新型高阻尼橡膠隔震支座對(duì)橋梁有良好的隔震效果。
3結(jié)論
本文對(duì)新型高阻尼橡膠隔震支座的力學(xué)性能與對(duì)橋梁的隔震性能進(jìn)行了實(shí)驗(yàn)研究。實(shí)驗(yàn)結(jié)果表明新型高阻尼橡膠隔震支座是速度相關(guān)型支座,加載頻率對(duì)其等效水平剛度有較大的影響,但對(duì)其等效阻尼系數(shù)影響不大。通過(guò)分析精確的定量地驗(yàn)證了新型高阻尼橡膠支座對(duì)橋梁的減隔震效果。
作者:邵麗霞 單位:長(zhǎng)安大學(xué)
1引言
混凝土是以骨料為填料,以硬化水泥漿為基體組成的復(fù)合材料。骨料在混凝土中占其體積的70%~80%,是組成混凝土的骨架,骨料的粒徑、顆粒形狀、級(jí)配、彈性模量等均會(huì)對(duì)混凝土的強(qiáng)度、耐久性和抗?jié)B性等產(chǎn)生重要影響,尤其對(duì)混凝土的力學(xué)性能影響較大。本文從混凝土宏觀力學(xué)、斷裂力學(xué)和細(xì)觀力學(xué)三個(gè)方面總結(jié)分析骨料對(duì)混凝土力學(xué)性能的影響,期望為改善混凝土的力學(xué)性能和研制出高性能混凝土材料提供參考。
2基于混凝土宏觀力學(xué)的影響研究
天然骨料粒徑、種類(lèi)和級(jí)配等對(duì)混凝土抗壓、抗拉等性能的影響較大,輕骨料、再生骨料的粒徑、替代率等對(duì)混凝土力學(xué)性能的也有較大影響。成振林等[1]通過(guò)實(shí)驗(yàn)發(fā)現(xiàn)粒徑小的粗骨料,在相同漿體條件下,其混凝土抗壓強(qiáng)度較低,在非連續(xù)級(jí)配中,當(dāng)單粒徑增大時(shí),混凝土強(qiáng)度呈遞減趨勢(shì);在連續(xù)級(jí)配中,最大粒徑占量最多時(shí),混凝土抗壓強(qiáng)度最大;隨著粗骨料粒徑增大,抗壓強(qiáng)度增加,粗骨料級(jí)配好,混凝土抗壓強(qiáng)度較高。徐仁崇等[2]發(fā)現(xiàn)在相同水泥用量的情況下,使用大粒徑碎石配制的透水混凝土抗壓強(qiáng)度較低,但透水系數(shù)較高。何錦云等[3]認(rèn)為小顆粒的骨料存在缺陷的幾率小,可降低骨料與水泥石界面的應(yīng)力差,增加與水泥漿的粘結(jié)面積,使粘結(jié)強(qiáng)度提高;大顆粒的骨料下沉速度快,造成混凝土內(nèi)部分布不均勻,影響混凝土的強(qiáng)度,過(guò)小的顆粒影響粘結(jié)強(qiáng)度。李嘉進(jìn)等[4]發(fā)現(xiàn)混凝土抗拉強(qiáng)度隨骨料粒徑的增大而降低,骨料最大粒徑為150mm試件的抗拉強(qiáng)度,只有骨料最大粒徑為40mm試件抗拉強(qiáng)度的80%左右,但是骨料粒徑對(duì)抗壓強(qiáng)度的影響不明顯。田礫等[5]通過(guò)三點(diǎn)受彎和直拉試驗(yàn),研究發(fā)現(xiàn)放大骨料最大粒徑,并通過(guò)顆粒級(jí)配來(lái)調(diào)整界面過(guò)渡區(qū)的組成,在滿(mǎn)足必要的力學(xué)性能要求下,可顯著改善纖維增強(qiáng)水泥基復(fù)合材料的應(yīng)變硬化特性。周立欣等[6]通過(guò)試驗(yàn)研究發(fā)現(xiàn),骨料類(lèi)型對(duì)早齡期混凝土抗壓強(qiáng)度和彈性模量影響較小,對(duì)早齡期混凝土劈裂抗拉強(qiáng)度影響較大。周敏等[7]發(fā)現(xiàn)無(wú)論是由單粒級(jí)還是連續(xù)粒級(jí)配制的無(wú)砂大孔混凝土,隨著骨料最大粒徑的增大,抗壓強(qiáng)度逐漸減小,在漿體總量相同的情況下,單粒級(jí)骨料抗壓強(qiáng)度低,且最大粒徑增加,強(qiáng)度降低。Jawahar等[8]發(fā)現(xiàn)不同粒徑混合的粗骨料,對(duì)自密實(shí)混凝土的抗壓強(qiáng)度影響不大,在粗骨料含量一定的情況下,最大粒徑粗骨料含量越多,自密實(shí)混凝土彈性模量、劈拉強(qiáng)度越大,粗骨料含量越大,自密實(shí)混凝土彈性模量、劈拉強(qiáng)度越大。Vu等[9]發(fā)現(xiàn)無(wú)側(cè)限壓縮時(shí),粗骨料粒徑對(duì)混凝土強(qiáng)度影響不大,在高圍壓下,粗骨料粒徑越大,對(duì)應(yīng)極限變形的平均應(yīng)變?cè)叫?,在高圍壓和高偏壓力條件下,粗骨料粒徑越小,混凝土軸向切線(xiàn)剛度越大。李鳳蘭等[10]發(fā)現(xiàn)當(dāng)粒徑小的輕骨料所占混合比例多時(shí),可獲得強(qiáng)度高于普通混凝土而彈性模量低于普通混凝土的復(fù)合骨料混凝土,當(dāng)粒徑大的輕骨料所占混合比例與粗骨料比例相當(dāng)或多時(shí),復(fù)合骨料混凝土的抗拉強(qiáng)度明顯降低。于本田等[11]過(guò)對(duì)混凝土強(qiáng)度和電通量的測(cè)試,采用灰色關(guān)聯(lián)分析方法研究發(fā)現(xiàn),粗骨料的緊密空隙率與混凝土不同齡期強(qiáng)度的關(guān)聯(lián)度最大,破碎面所占比例和壓碎指標(biāo)值次之,針片狀顆粒含量最小,故降低粗骨料的緊密空隙率,提高破碎面所占比例可使混凝土獲得較高的抗壓強(qiáng)度。對(duì)于普通混凝土,一般情況下,骨料粒徑越大,抗壓強(qiáng)度越大,抗拉強(qiáng)度越小,級(jí)配越好,抗壓強(qiáng)度越高,非連續(xù)級(jí)配下,骨料粒徑越大,抗壓強(qiáng)度越大,連續(xù)級(jí)配中,最大骨料粒徑含量越大,抗壓強(qiáng)度越大,一定條件下,放大骨料最大粒徑,可以改善應(yīng)變硬化特征,對(duì)受高圍壓的混凝土,粗骨料粒徑越大,對(duì)混凝土應(yīng)變,剛度越有利。但是對(duì)其它類(lèi)型混凝土,如對(duì)無(wú)砂大孔混凝土,骨料粒徑越大,抗壓強(qiáng)度越小,對(duì)輕骨料混凝土,粒徑小的輕骨料含量越多,抗壓強(qiáng)度越高,故骨料對(duì)不同混凝土的影響不同。
3基于混凝土斷裂力學(xué)的影響研究
混凝土宏觀力學(xué)性能的研究,很難揭示材料變形和破壞的物理機(jī)制,研究骨料對(duì)混凝土斷裂參數(shù)的影響,分析骨料對(duì)混凝土內(nèi)裂紋的擴(kuò)展演化過(guò)程的影響,這些基于混凝土斷裂力學(xué)理論的研究受到關(guān)注。林辰等[12]利用雙參數(shù)模型研究發(fā)現(xiàn)對(duì)于高強(qiáng)混凝土最大粗骨料粒徑增大,臨界應(yīng)力強(qiáng)度因子增大。吳智敏等[13]發(fā)現(xiàn)當(dāng)骨料最大粒徑Dmax≤40mm時(shí),混凝土斷裂韌度、斷裂能隨Dmax的增大而增大,當(dāng)Dmax>40mm時(shí),斷裂韌度和斷裂能隨Dmax的增大而減小且趨于穩(wěn)定,而臨界裂縫尖端張開(kāi)位移與Dmax無(wú)關(guān)。應(yīng)榮華等[14]發(fā)現(xiàn)粗骨料可以較大地減小應(yīng)力強(qiáng)度因子,其作用類(lèi)似于加筋作用,粗骨料的粒徑越大,粗骨料離裂紋尖端的距離越近,加筋作用也就越明顯,裂紋尖端的應(yīng)力強(qiáng)度因子降低的幅度越大,應(yīng)力強(qiáng)度因子的值越小。朱亞超等[15]基于試驗(yàn)結(jié)果和改進(jìn)的J積分計(jì)算方法,得出砂漿-骨料界面的ⅳ型斷裂能隨著砂漿基體強(qiáng)度的提高和骨料表面粗糙度的提高而提高。鄭丹等[16]采用斷裂力學(xué)方法分析了混凝土在拉壓多軸情況下的破壞準(zhǔn)則,結(jié)果表明拉壓狀態(tài)下的不同尺寸和骨料級(jí)配的混凝土試件抗拉和抗壓強(qiáng)度均低于相應(yīng)的單軸拉壓強(qiáng)度,并且混凝土的骨料粒徑越大,其雙軸強(qiáng)度下降越大,最大骨料粒徑對(duì)混凝土的雙軸破壞準(zhǔn)則并無(wú)影響。Zhang等[17]發(fā)現(xiàn)對(duì)普通強(qiáng)度的混凝土,骨料總含量一定時(shí),小骨料顆粒導(dǎo)致高抗拉強(qiáng)度和急劇的峰后應(yīng)力下降,骨料顆粒越小,峰后應(yīng)力σ-w曲線(xiàn)越陡;但對(duì)高強(qiáng)度混凝土,對(duì)不同的骨料顆粒σ-w曲線(xiàn)基本相似,峰后應(yīng)力σ-w曲線(xiàn)比普通強(qiáng)度的混凝土更陡,骨料顆粒越小,抗拉強(qiáng)度越高;對(duì)普通和高強(qiáng)混凝土,斷裂能和特征長(zhǎng)度隨骨料顆粒的增大而增大。張海等[18]利用四點(diǎn)剪切加載的試驗(yàn)方法發(fā)現(xiàn)骨料不同,主要的斷裂形式不同,骨料對(duì)混凝土斷裂韌度影響較大;陶粒混凝土斷裂韌度低于花崗巖和石灰石混凝土的斷裂韌度。劉進(jìn)寶等[19]基于穩(wěn)定斷裂試驗(yàn),采用逆分析方法,發(fā)現(xiàn)斷裂能隨骨料粒徑的增大而增大,表明骨料對(duì)裂縫有阻礙作用,隨著骨料粒徑的增大,骨料從基體中拔出的長(zhǎng)度越大,最大黏聚裂紋寬度逐漸增大。郝彩哲等[20]發(fā)現(xiàn)不同骨料的混凝土斷裂軌跡不同,骨料的強(qiáng)度越大,混凝土的斷裂荷載越大,變形越小,也就是脆性越大,骨料不同,裂紋擴(kuò)展的方式也不同,陶粒幾乎完全斷裂,花崗巖和石灰石少部分?jǐn)嗔?。吳靜等[21]認(rèn)為弱化了的細(xì)集料-水泥石界面,細(xì)集料表面的初始缺陷將宏觀分離裂縫誘導(dǎo)為均勻分布于砂漿基體中的彌散裂縫,增加了有效裂縫長(zhǎng)度,也增大了斷裂過(guò)程區(qū),提高混凝土的斷裂能和延性指數(shù)。通過(guò)斷裂力學(xué)理論研究混凝土力學(xué)性能,發(fā)現(xiàn)粗骨料粒徑越大,斷裂韌度、斷裂能、臨界應(yīng)力強(qiáng)度因子越大,表明粗骨料對(duì)裂縫的發(fā)展有阻礙作用,可以提高混凝土的延性和抗壓強(qiáng)度,骨料越小,抗拉強(qiáng)度越高,峰后應(yīng)力下降越劇烈,與骨料對(duì)混凝土宏觀力學(xué)的影響一致。此外骨料強(qiáng)度越高,斷裂荷載越高,變形越小,骨料表面越粗糙,斷裂能越高,這些都提高了混凝土的強(qiáng)度,延性等。
4基于混凝土細(xì)觀力學(xué)的影響研究
斷裂力學(xué)研究宏觀裂縫對(duì)混凝土性能的影響,但是無(wú)法分析宏觀裂紋出現(xiàn)以前材料中微缺陷或微裂紋的形成及其發(fā)展對(duì)材料力學(xué)性能的影響,研究者將細(xì)觀力學(xué)引入混凝土的研究。在混凝土細(xì)觀力學(xué)的發(fā)展中骨料對(duì)混凝土力學(xué)性能的影響主要集中在細(xì)觀力學(xué)數(shù)值模型建立,細(xì)觀層次混凝土損傷研究?jī)蓚€(gè)方面?;诨炷恋募?xì)觀結(jié)構(gòu),人們提出了許多混凝土細(xì)觀損傷斷裂的數(shù)值模型,如格構(gòu)模型、隨機(jī)粒子模型、隨機(jī)骨料模型、隨機(jī)力學(xué)特性模型等[22],數(shù)值模型仍不斷改進(jìn)發(fā)展。孫立國(guó)等[23]提出了一種新的高效投放算法,通過(guò)一次性隨機(jī)投放形成同種骨料的所有三角形基骨料,然后在此基礎(chǔ)上隨機(jī)延凸,生成任意形狀的隨機(jī)骨料。李建波等[24]通過(guò)提出骨料粒徑極值比閾值的方法,剔除奇形骨料顆粒,并針對(duì)骨料填充過(guò)程采取半人工干預(yù)方式,切實(shí)做到在保證骨料目標(biāo)填充效率及成功率的條件下,兼顧骨料形狀與分布的隨機(jī)性。汪衛(wèi)明等[25]把骨料當(dāng)作剛體,砂漿當(dāng)做彈性體考慮,骨料用塊體元模擬,砂漿用有限元模擬,提出了運(yùn)用于混凝土細(xì)觀力學(xué)仿真分析的塊體元-有限元耦合方法,可以大大地減少有限單元的數(shù)目,簡(jiǎn)化前處理,減少計(jì)算量。王旗華等[26]提出的混凝土三相結(jié)構(gòu)細(xì)觀模型生成方法,避開(kāi)了復(fù)雜的侵入判定,提高了骨料的投放效率,綜合應(yīng)用的極坐標(biāo)方法、布爾運(yùn)算方法以及圖層管理方法,使篩分簡(jiǎn)單、計(jì)算量小、有限元處理便捷。Chen等[27]應(yīng)用自定義的3D細(xì)觀離散單元法分析瀝青混凝土的斷裂性能,在建立的細(xì)觀模型中,骨料的形狀、顆粒級(jí)配、骨料含量通過(guò)定義的功能能容易的控制。梁聽(tīng)宇等[28]應(yīng)用隨機(jī)骨料模型,進(jìn)行數(shù)值模擬,發(fā)現(xiàn)骨料隨機(jī)位置對(duì)混凝土試件強(qiáng)度的影響比較小,對(duì)變形影響比較大,骨料尺寸對(duì)強(qiáng)度的影響比較大,混凝土骨料相對(duì)試件越小,其脆性越明顯。琚宏昌等[29]運(yùn)用Monte-Carlo方法模擬三相復(fù)合材料混凝土試件,采用各向同性的Mazars損傷演化模型描述混凝土細(xì)觀各相彈性損傷退化過(guò)程,利用有限元方法分別進(jìn)行了混凝土二、三、四級(jí)配圓形、多邊形骨料試件的單軸拉伸數(shù)值模擬。試驗(yàn)結(jié)果表明,同一級(jí)配任意多邊形骨料試件的極限承載力總體上要大于圓形骨料試件的承載能力;二、三、四級(jí)配混凝土試件強(qiáng)度依次遞減;在應(yīng)力-應(yīng)變曲線(xiàn)的軟化階段,圓形骨料較多邊形骨料試件軟化曲線(xiàn)平緩;多邊形骨料混凝土試件的脆性指數(shù)較圓形骨料混凝土試件的脆性指數(shù)高。唐欣薇等[30]對(duì)混凝土切口三點(diǎn)彎梁試驗(yàn)進(jìn)行了數(shù)值仿真,分析了同級(jí)配不同骨料顆粒分布特征對(duì)裂紋擴(kuò)展性態(tài)及宏觀力學(xué)性能的影響。裂紋主要沿著骨料與砂漿界面擴(kuò)展,當(dāng)離開(kāi)界面時(shí),則從砂漿內(nèi)部擴(kuò)展,強(qiáng)度較高的骨料顆粒對(duì)微裂紋擴(kuò)展有阻礙作用,斷裂一般不發(fā)生在骨料內(nèi),數(shù)值仿真的力-位移曲線(xiàn)的應(yīng)變軟化段存在微幅波動(dòng)現(xiàn)象。黃修山等[31]首先通過(guò)試驗(yàn)測(cè)定了數(shù)值模型中需要的砂漿、骨料強(qiáng)度和變形參數(shù),在顆粒流數(shù)值平臺(tái)上實(shí)現(xiàn)了砂漿、1~3mm、1~4mm和1~5mm粒組骨料數(shù)字混凝土單軸壓縮虛擬實(shí)驗(yàn),發(fā)現(xiàn)骨料對(duì)混凝土材料強(qiáng)度和變形特性具有明顯的增強(qiáng)特性,骨料越大,微裂紋多繞骨料產(chǎn)生和發(fā)展,骨料粒徑范圍越大,越容易形成架空結(jié)構(gòu),造成應(yīng)力應(yīng)變曲線(xiàn)峰值附近的波動(dòng),形成次穩(wěn)定和多級(jí)強(qiáng)化。Zhang等[32]運(yùn)用骨料生成和打包算法建立了考慮混凝土非均勻性的數(shù)值模型,此模型表達(dá)了骨料分布的隨意性,三點(diǎn)彎曲梁試驗(yàn)和數(shù)值分析發(fā)現(xiàn)骨料對(duì)斷裂性能影響較大,裂縫不沿著原有裂縫發(fā)展,而是在附近呈Z字行分布,斷裂方向上的骨料也破裂。王寶庭等[33]采用適宜極限分析及處理微裂紋行為的剛體-彈簧元法,以隨機(jī)圓形顆粒模型代表混凝土的結(jié)構(gòu),模擬計(jì)算了混凝土試件的單軸抗壓的本構(gòu)特性,全級(jí)配混凝土試件的彈性模量與骨料的彈性模量的關(guān)系為二次曲線(xiàn)。黃俊等[34]用有限元方法模擬了輕骨料混凝土在單軸拉伸載荷作用下的破壞形式,發(fā)現(xiàn)輕骨料混凝土裂紋首先在輕骨料中萌生、擴(kuò)展,斷裂面擴(kuò)展幾乎不受骨料阻礙,破壞過(guò)程比較突然。骨料形狀、顆粒級(jí)配、骨料分布、骨料含量、骨料和砂漿的模擬方法等都極大地影響了普通混凝土細(xì)觀力學(xué)中數(shù)值模型的建立和處理,在數(shù)值模擬分析中,骨料粒徑、強(qiáng)度越大,微裂縫多繞骨料產(chǎn)生和發(fā)展,骨料粒徑范圍越大,越易形成架空作用,任意多邊形骨料試件的極限承載力大于圓形骨料試件的承載力等,可見(jiàn)骨料的粒徑、級(jí)配和形狀等影響了裂縫的萌生和發(fā)展,對(duì)混凝土細(xì)觀力學(xué)性能影響同對(duì)混凝土斷裂力學(xué)性能和宏觀力學(xué)性能的影響基本一致。
5結(jié)語(yǔ)
本文從混凝土宏觀力學(xué)、斷裂力學(xué)和細(xì)觀力學(xué)三個(gè)方面分析總結(jié)了骨料的粒徑、顆粒形狀、級(jí)配和密度等性能對(duì)混凝土的力學(xué)性能的影響。骨料特性影響了混凝土的抗壓、抗拉強(qiáng)度等,影響了混凝土斷裂形式、斷裂參數(shù)、強(qiáng)度判據(jù)、數(shù)值模型,裂縫發(fā)展等,骨料對(duì)混凝土斷裂性能、裂縫擴(kuò)展、應(yīng)力應(yīng)變場(chǎng)變化等的影響和對(duì)混凝土宏觀強(qiáng)度的影響基本一致?;炷梁暧^力學(xué)、斷裂力學(xué)和細(xì)觀力學(xué)的研究,使人們從不同層面全面了解骨料對(duì)混凝土性能影響、混凝土的破壞機(jī)理及其復(fù)雜的應(yīng)力應(yīng)變場(chǎng)等,可為改善混凝土的力學(xué)性能和研制出高性能混凝土材料提供參考。
作者:王赟 單位:陜西理工學(xué)院土木工程與建筑學(xué)院
1試驗(yàn)概況
1.1原材料
水泥:呼和浩特市冀東水泥廠生產(chǎn)的P·O42.5級(jí)水泥;細(xì)骨料:呼和浩特市產(chǎn)河砂;鋼渣采用包鋼轉(zhuǎn)爐鋼渣,本試驗(yàn)選取鋼渣均經(jīng)過(guò)熱悶工藝,釋放其膨脹性,符合混凝土粗骨料相關(guān)標(biāo)準(zhǔn),經(jīng)破碎篩選,粒徑15~25mm。試驗(yàn)對(duì)比用天然碎石采用呼和浩特市大青山機(jī)制硬質(zhì)花崗巖碎石,粒徑15~25mm。水膠比為0.3、0.4時(shí),使用聚羧酸高效減水劑;水膠比為0.6時(shí),使用萘系減水劑。
1.2試驗(yàn)配合比
混凝土配合比共三種,分別為0.3、0.4、0.6;鋼渣代碎石率(體積比)分別0、50、100%。1.3試驗(yàn)內(nèi)容試驗(yàn)內(nèi)容分為三類(lèi):一是骨料性能測(cè)試,具體依照J(rèn)GJ52—2006《普通混凝土用砂石質(zhì)量及檢驗(yàn)方法標(biāo)準(zhǔn)》;二是混凝土拌合物坍落度及含氣量測(cè)試,參照GBT50080—2002《普通混凝土拌合物性能試驗(yàn)方法標(biāo)準(zhǔn)》;三是鋼渣代碎石混凝土的力學(xué)性能測(cè)試,參照GBT50081—2002《普通混凝土力學(xué)性能測(cè)試方法標(biāo)準(zhǔn)》。混凝土強(qiáng)度試件尺寸為100mm×100mm×100mm,采用試驗(yàn)室標(biāo)準(zhǔn)養(yǎng)護(hù),壓縮強(qiáng)度試驗(yàn)齡期分別為3、7、28、90d、半年及一年,劈裂抗壓強(qiáng)度試驗(yàn)齡期為90d。
2試驗(yàn)結(jié)果與分析
2.1骨料性能測(cè)試結(jié)果
密度、含水率測(cè)試結(jié)果見(jiàn)表1。鋼渣表觀密度為3126.67kgm3,含水率為2.17%。碎石表觀密度為2843.35kgm3,含水率為1.1%。鋼渣表觀密度及含水率均大于碎石。表2為鋼渣與碎石壓碎指標(biāo)測(cè)試結(jié)果。有試驗(yàn)結(jié)果可知,鋼渣壓碎指標(biāo)平均值為4%,碎石壓碎指標(biāo)平均值為7%,鋼渣壓碎指標(biāo)小于碎石壓碎指標(biāo)。
2.2混凝土拌合物
混凝土拌合物含氣量及坍落度試驗(yàn)結(jié)果見(jiàn)表3。當(dāng)水膠比為0.3時(shí),相同配合比條件下,鋼渣代碎石混凝土的坍落度與普通混凝土相近。當(dāng)水膠比為0.4時(shí),要達(dá)到與普通混凝土相同流動(dòng)性,鋼渣代碎石混凝土減水劑用量需增大到普通碎石混凝土的2.3倍。當(dāng)水膠比為0.6時(shí),鋼渣代碎石混凝土單獨(dú)增加減水劑已無(wú)法調(diào)配出與普通混凝土相同的流動(dòng)性,需要同時(shí)增加水的用量。觀察不同鋼渣代碎石率的混凝土含氣量,可發(fā)現(xiàn)在同等水膠比條件下,鋼渣代碎石混凝土含氣量比普通混凝土含氣量大,且隨著鋼渣代碎石率的增大,拌合物的含氣量逐漸增大。隨著水膠比的增大,鋼渣混凝土拌合物含氣量有進(jìn)一步增大的趨勢(shì)。
2.3硬化混凝土力學(xué)性能
2.3.1抗壓強(qiáng)度
表4顯示了混凝土抗壓強(qiáng)度試驗(yàn)結(jié)果。表5是混凝土各齡期相對(duì)強(qiáng)度增長(zhǎng)率。圖1為混凝土抗壓強(qiáng)度隨齡期的發(fā)展曲線(xiàn)。期齡90d后,普通混凝土抗壓強(qiáng)度增長(zhǎng)率開(kāi)始逐漸減小,不足8%;而鋼渣代碎石混凝土增長(zhǎng)率逐漸增大至15%左右,鋼渣代碎石混凝土增長(zhǎng)率明顯大于普通混凝土。到180d時(shí),同水膠比下鋼渣代混凝土已和普通混凝土抗壓強(qiáng)度非常接近。180d后,不同鋼渣代碎石率混凝土抗壓強(qiáng)度增長(zhǎng)速率已逐漸趨于穩(wěn)定,鋼渣代碎石混凝土強(qiáng)度增長(zhǎng)率仍大于普通混凝土。且同等水膠比下鋼渣代碎石率越高,混凝土強(qiáng)度增長(zhǎng)越快。
2.3.2劈裂抗拉強(qiáng)度
表6為90d劈裂抗拉試驗(yàn)結(jié)果,圖2為不同水膠比鋼渣代碎石混凝土與普通混凝土90d劈裂抗拉強(qiáng)度變化曲線(xiàn)。由試驗(yàn)結(jié)果可知,不同替代率的鋼渣代碎石混凝土與普通混凝土的劈裂抗拉強(qiáng)度隨水膠比的變化趨勢(shì)相同的,均隨著水膠比的增大,劈裂抗拉強(qiáng)度不斷減小。相同條件下,鋼渣混凝土與普通混凝土劈裂抗拉強(qiáng)度無(wú)明顯差異。
3結(jié)論
(1)鋼渣與碎石在物理性質(zhì)上存在的差異:鋼渣表觀密度和含水率比碎石大,壓碎指標(biāo)要小于碎石。(2)在相同配合比條件下,要配出與普通混凝土流動(dòng)性相同的鋼渣代碎石混凝土,需增大水和減水劑的用量;且隨著水膠比的增大,所需水和減水劑用量逐漸增大;混凝土拌合物含氣量隨鋼渣代碎石率的增加而增大。(3)與普通碎石混凝土相比,鋼渣代碎石混凝土抗壓強(qiáng)度早期增長(zhǎng)率基本相同,長(zhǎng)齡期抗壓強(qiáng)度增長(zhǎng)率大于普通碎石混凝土。(4)鋼渣代碎石混凝土與相同配合比條件普通混凝土的劈裂抗拉強(qiáng)度接近。
作者:石東升 單位:內(nèi)蒙古工業(yè)大學(xué)
1引言
近年來(lái)隨著經(jīng)濟(jì)社會(huì)的發(fā)展和人們生活水平的不斷提高,使得社會(huì)對(duì)物質(zhì)產(chǎn)品消費(fèi)不斷提高,從而促進(jìn)了作為商品重要包裝形式的瓦楞紙板行業(yè)迅速發(fā)展,瓦楞紙板的需求量十分巨大。商品在流通過(guò)程中,瓦楞紙板這類(lèi)紙質(zhì)包裝材料受到流通環(huán)境溫度、濕度制約,其力學(xué)性質(zhì)和動(dòng)力學(xué)特性也直接受到環(huán)境的影響[1]。所以要求產(chǎn)品包裝必須滿(mǎn)足流通運(yùn)輸環(huán)境要求,保證產(chǎn)品的安全可靠性。在實(shí)際的流通運(yùn)輸環(huán)境下,引起瓦楞紙板力學(xué)性能變化的影響因素很多,溫度和濕度的變化影響尤其顯著,直接影響到瓦楞紙板包裝物品的安全性和使用時(shí)限。王俊麗、李廣生、肖文娟、程小琴等[2-5]通過(guò)在不同的含水率條件下瓦楞紙板力學(xué)性能的測(cè)定,得出瓦楞紙板的力學(xué)性能隨紙板含水率的增加而下降。DongMeiWang[6]等人在不同溫度下,研究溫度對(duì)紙蜂窩夾層板的含水率的影響,結(jié)果表明瓦楞紙板的含水率隨著溫度的升高而下降;隨著溫度的變化,瓦楞紙板的含水率發(fā)生了變化,最終影響到瓦楞紙板的力學(xué)性能。在實(shí)際運(yùn)輸過(guò)程中,瓦楞紙板的力學(xué)性能在不同溫濕度環(huán)境下的變化比較顯著,但目前對(duì)瓦楞紙板在模擬運(yùn)輸環(huán)境下力學(xué)性能的研究卻鮮有報(bào)道。當(dāng)前,瓦楞紙板的種類(lèi)繁多,不同類(lèi)型的瓦楞紙板會(huì)有不同的力學(xué)性能。三層UV型瓦楞紙板的需用量非常大,已在精細(xì)產(chǎn)品、中小型和高檔包裝領(lǐng)域逐漸擴(kuò)展,特別是在一些精密儀表、中小型家電、玻璃陶瓷器皿、醫(yī)藥、干鮮果品、飲料及禮品等的包裝上體現(xiàn)得尤為明顯。為了更好的解決三層UV型瓦楞紙板實(shí)際使用過(guò)程中出現(xiàn)的問(wèn)題,為企業(yè)提供更多實(shí)際可行的借鑒方案,很有必要的對(duì)三層UV型瓦楞紙板的力學(xué)性能進(jìn)行深入研究。
2材料與方法
2.1材料與儀器
實(shí)驗(yàn)材料:三層UV型瓦楞紙板,A型,克重為180g/cm2,南寧新大海紙箱廠。實(shí)驗(yàn)儀器:17-76型抗壓強(qiáng)度測(cè)試儀,美國(guó)TMI儀器制造公司;LP-80U型恒溫恒濕實(shí)驗(yàn)試驗(yàn)箱,廣東宏展科技有限公司。
2.2實(shí)驗(yàn)方法
選擇在流通環(huán)境下比較常見(jiàn)的溫濕度。一般在車(chē)廂里面或集裝箱內(nèi)的溫度為10℃-50℃,濕度為30%-80%。結(jié)合實(shí)驗(yàn)室相關(guān)條件,相對(duì)濕度選取40%、50%、60%、70%、80%、90%,100%的7個(gè)水平。溫度選取20℃、25℃、30℃、35℃、40℃、45℃、50℃的7個(gè)水平。裁切100mm×25mm(長(zhǎng)×高)的試樣,試樣采用GB/T22906.2-2008《紙芯的測(cè)定第2部分:試樣的溫濕處理》[7]進(jìn)行試樣溫濕度處理。平壓強(qiáng)度采用GB/T22906.9-2008《紙芯的測(cè)定第9部分:平壓強(qiáng)度的測(cè)定》[8];邊壓強(qiáng)度采用GB/T6546-1998《瓦楞紙板邊壓強(qiáng)度的測(cè)定法》[9],粘合強(qiáng)度采用GB/T6548-2011,《瓦楞紙板粘合強(qiáng)度的測(cè)定》[10]。
3結(jié)果與討論
3.1溫濕度對(duì)瓦楞紙板力學(xué)性能的影響
3.1.1溫濕度對(duì)瓦楞紙板平壓強(qiáng)度的影響
不同濕度條件下,隨著溫度升高,各條曲線(xiàn)呈上下波動(dòng)趨勢(shì),波動(dòng)值在20℃-30℃和40℃-50℃范圍內(nèi)變化不大,在30℃-40℃范圍內(nèi)的變化大,說(shuō)明三層UV型瓦楞紙板平壓強(qiáng)度在溫度為30℃-40℃時(shí)的影響大;引起這一變化的原因是在30℃-40℃時(shí),在各相對(duì)濕度下,瓦楞紙板內(nèi)的纖維之間容易散失水分,瓦楞紙板的含水率不高,紙板纖維間的氫鍵力作用比較大。相對(duì)濕度為80%時(shí)的曲線(xiàn)波動(dòng)最大,說(shuō)明溫度對(duì)相對(duì)濕度為80%時(shí)的影響是最大的;相對(duì)濕度為100%時(shí)的曲線(xiàn)波動(dòng)最小,說(shuō)明當(dāng)相對(duì)濕度達(dá)到最大值時(shí),在各個(gè)溫度條件下瓦楞紙板內(nèi)的含水率都非常高,平壓強(qiáng)度在此濕度下隨著溫度的變化比較小。當(dāng)相對(duì)濕度為40%,溫度在35℃-45℃時(shí),瓦楞紙板的平壓強(qiáng)度達(dá)到最大值,這是因?yàn)榧埌鍍?nèi)纖維之間的水分含量比較低,纖維之間的作用力比較大。不同溫度時(shí),當(dāng)瓦楞紙板的相對(duì)濕度增加到70%-80%,瓦楞紙板的平壓強(qiáng)度下降明顯加快。影響瓦楞紙板平壓強(qiáng)度主要因素是纖維的作用力,纖維間水分的含量直接影響著纖維間的相互作用力,當(dāng)環(huán)境相對(duì)濕度增加到70%后,紙板纖維潤(rùn)脹達(dá)到最大程度,纖維間的氫鍵就會(huì)被破壞,使瓦楞紙板的平壓強(qiáng)度下降。
3.1.2溫濕度對(duì)瓦楞紙板邊壓強(qiáng)度的影響
不同濕度條件下,隨著溫度升高,各條曲線(xiàn)呈上下波動(dòng)趨勢(shì),波動(dòng)值在20℃-30℃范圍內(nèi),變化大,在30℃-50℃范圍內(nèi),波動(dòng)值小。說(shuō)明三層UV型瓦楞紙板邊壓強(qiáng)度在低溫時(shí)容易受到溫度變化的影響;引起這一變化的原因是當(dāng)溫度升高到25℃左右時(shí),紙板纖維之間的作用力變小造成的;相對(duì)濕度為90%和100%時(shí)的曲線(xiàn)波動(dòng)最大,說(shuō)明在高濕度環(huán)境下,瓦楞紙板內(nèi)隨著溫度的升高水分散失嚴(yán)重;從圖可看出邊壓強(qiáng)度最大值范圍出現(xiàn)在相對(duì)濕度為40%溫度在35℃-45℃之間,這是因?yàn)樵诘蜐窀邷氐沫h(huán)境下,紙板內(nèi)的水分含量低,水分對(duì)紙板結(jié)構(gòu)力學(xué)造成的影響比較小,所以紙板結(jié)構(gòu)力比較大。邊壓強(qiáng)度隨著相對(duì)濕度的增大不斷地變小。不同溫度時(shí),當(dāng)瓦楞紙板濕度增加到80%,瓦楞紙板的邊壓強(qiáng)度下降更快,說(shuō)明當(dāng)瓦楞紙板的濕度到達(dá)80%以上時(shí),瓦楞紙板的平壓強(qiáng)度受濕度的影響加大,若濕度繼續(xù)增加,瓦楞紙板就可能失效,在運(yùn)輸中就喪失了作為運(yùn)輸包裝的保護(hù)產(chǎn)品的功能。
3.1.3溫濕度對(duì)瓦楞紙板粘合強(qiáng)度的影響
不同濕度條件下,隨著溫度升高,各條曲線(xiàn)呈上下波動(dòng)趨勢(shì),波動(dòng)值在30℃-40℃范圍內(nèi),變化比較大,說(shuō)明三層UV型瓦楞紙板粘合強(qiáng)度對(duì)高溫的影響是比較明顯的,粘合強(qiáng)度主要的影響因素是粘合劑,在此溫度范圍內(nèi),水分的散失比較慢,導(dǎo)致粘合劑的含水量大,降低了粘合劑的粘合力。從圖3還可以看出,隨著濕度的增大,粘合強(qiáng)度都在不斷下降。粘合強(qiáng)度的最大值范圍出現(xiàn)在相對(duì)濕度40%,溫度為40℃-50℃時(shí),在高溫低濕環(huán)境下,粘合劑的含水量比較少,粘合劑的粘合力比較大。當(dāng)相對(duì)濕度大于70%時(shí),三層UV型瓦楞紙板的粘合強(qiáng)度下降速率非常大,可能由于相對(duì)濕度大于70%時(shí),水分增加較快,瓦楞紙板的粘合劑開(kāi)始慢慢變軟,粘合劑的粘合力不斷下降,使得瓦楞紙板的粘合強(qiáng)度下降的速率變大。綜合圖1-圖3所示,在溫度為35℃-45℃的運(yùn)輸條件下,當(dāng)相對(duì)濕度為40%時(shí),三層UV型瓦楞紙板的三種力達(dá)到相對(duì)的最大值,在此條件下最適合物品的運(yùn)輸,可以更好的保護(hù)產(chǎn)品。對(duì)三層UV型瓦楞紙板力學(xué)性能影響比較大的是相對(duì)濕度,溫度次之。
4結(jié)論
本文探討了模擬流通環(huán)境中不同溫度和濕度對(duì)三層UV型瓦楞紙板的力學(xué)性能的影響。研究表明,流通環(huán)境的相對(duì)濕度對(duì)瓦楞紙板的影響較大,溫度對(duì)瓦楞紙板影響次之;當(dāng)溫度在35℃-45℃之間、相對(duì)濕度為40%的狀態(tài)下,瓦楞紙板的力學(xué)性能達(dá)到最佳值,此時(shí)瓦楞紙板可以最大限度的保證產(chǎn)品的安全性。在運(yùn)輸流通環(huán)境下,保證相對(duì)濕度不超過(guò)70%,瓦楞紙板可以更好保護(hù)產(chǎn)品。但要探究其原因,還需要從微觀層面,楞紙板的內(nèi)在纖維的影響等因素進(jìn)行深入研究,在未來(lái)的瓦楞紙板力學(xué)性能研究中需要結(jié)合結(jié)構(gòu)力學(xué),材料力學(xué)等進(jìn)行細(xì)致地分析瓦楞紙板內(nèi)在的影響因素,開(kāi)展深層理論研究。
作者:黃劍宗 單位:廣西大學(xué)輕工與食品工程學(xué)院
1試驗(yàn)材料及方法
試驗(yàn)原料為真空冶煉并鍛造而成的鍛坯,首先在鍛坯上截取直徑為4.0mm、長(zhǎng)10.0mm的圓柱試樣,采用熱膨脹儀測(cè)得合金鋼材料的A1和A3分別為710℃和930℃。采用二輥軋機(jī)將1200℃保溫90min的鍛坯熱軋為厚度為3.0mm的熱軋板,并對(duì)其依次進(jìn)行酸洗、冷軋,最后得到厚度為1.2mm的雙相鋼冷軋薄板,其主要化學(xué)成分w(%):0.10C、1.35Si、1.88Mn、0.007P、0.0056S,余量為Fe。在冷軋鋼板上沿軋制方向截取長(zhǎng)220mm、寬60mm雙相鋼試樣,并進(jìn)行連續(xù)退火試驗(yàn)。根據(jù)實(shí)驗(yàn)測(cè)得的A1和A3,確定退火溫度分別為735、760、785、810和835℃。將試樣加熱至退火溫度并進(jìn)行保溫處理,保溫時(shí)間為6min,然后將試樣冷卻至685℃后淬火到240℃,保溫12min后冷卻至室溫。對(duì)工藝參數(shù)不同的退火板取樣,利用熱場(chǎng)發(fā)射掃描電子顯微鏡及EBSD技術(shù)對(duì)其進(jìn)行顯微組織觀察和相結(jié)構(gòu)分析,并采用電子萬(wàn)能試驗(yàn)機(jī)對(duì)其力學(xué)性能按照國(guó)標(biāo)要求進(jìn)行測(cè)試。
2試驗(yàn)結(jié)果及分析
2.1顯微組織
圖1是退火溫度為735、760、785、810和835℃時(shí)雙相鋼連續(xù)退火后的組織。可以看出,不同溫度條件下的退火組織均為馬氏體和鐵素體,無(wú)明顯差異。同時(shí)發(fā)現(xiàn)馬氏體(硬相)呈凸起島狀,且均勻分布在鐵素體(軟相)的晶界上,形成了由軟相和硬相組成的雙相組織[4]。通過(guò)ImagesProPlu和彩色金相圖片對(duì)不同退火溫度下馬氏體的體積分?jǐn)?shù)進(jìn)行定量分析,研究組織中的相構(gòu)成[5]。統(tǒng)計(jì)數(shù)據(jù)顯示,馬氏體的體積分?jǐn)?shù)隨退火溫度的升高由13.8%增加至19.7%,且馬氏體島尺寸增大。這是由于在退火過(guò)程中,奧氏體隨退火溫度的升高逐漸增多;同時(shí),C元素以及其他合金元素的擴(kuò)散率也增大,奧氏體的尺寸增大。大部分奧氏體組織在淬火處理后轉(zhuǎn)變?yōu)轳R氏體,增加了馬氏體的體積分?jǐn)?shù)以及尺寸。由圖1還可以看到,馬氏體島中心位置顏色較暗,而與鐵素體交界區(qū)域出現(xiàn)了光亮圈。這是因?yàn)镃元素的熱擴(kuò)散速率較大,使其在連續(xù)退火過(guò)程中擴(kuò)散較充分,使鐵素體與奧氏體中的碳濃度達(dá)到了平衡狀態(tài)。而Mn元素在奧氏體組織中的擴(kuò)散速率小于其在鐵素體組織中的擴(kuò)散速率,導(dǎo)致鐵素體與奧氏體的交界區(qū)域成為富Mn區(qū),而淬透性與Mn的含量呈正比例關(guān)系,不同淬透性導(dǎo)致其內(nèi)部較暗,而與鐵素體的交界呈現(xiàn)光亮圈。
2.2相結(jié)構(gòu)
退火溫度分別為735℃和785℃時(shí),汽車(chē)用高Si雙相鋼材料連續(xù)退火后的EBSD圖像如圖2所示。(采用黑色標(biāo)記殘余奧氏體,其他顏色標(biāo)記馬氏體和鐵素體)可以看出,不同退火溫度條件下雙相鋼組織中均得到了分布于鐵素體晶界上的粒狀殘余奧氏體組織。這是由于雙相鋼材料中Si元素的含量較高,在退火過(guò)程可促進(jìn)鐵素體中C元素向奧氏體擴(kuò)散,提高了奧氏體相中的含碳量;同時(shí)在冷卻過(guò)程中Si元素還可以對(duì)碳化物的析出起到抑制作用,降低了奧氏體相中的碳損失。高碳奧氏體相的Ms點(diǎn)較低,因此具有較高的熱穩(wěn)定性,在室溫條件下穩(wěn)定存在并被保留。經(jīng)測(cè)量,殘余奧氏體的晶粒直徑均小于1μm,穩(wěn)定性較高。圖3給出了雙相鋼在760℃時(shí)退火后的透射照片??梢钥闯?,部分殘余奧氏體組織呈薄膜狀,分布于板條馬氏體組織中。薄膜狀?yuàn)W氏體由于尺寸較小,同時(shí)周?chē)笋R氏體束,提高了其成核所需表面能,因此增加了其向馬氏體轉(zhuǎn)變的難度。
2.3力學(xué)性能
表1給出了不同退火溫度下雙相鋼連續(xù)退火后的力學(xué)性能。可知,隨著退火溫度升高,試驗(yàn)鋼抗拉強(qiáng)度呈現(xiàn)先升高后降低。這是由于當(dāng)退火溫度高于735℃后,馬氏體的體積分?jǐn)?shù)開(kāi)始急劇增加,抗拉強(qiáng)度也隨之大幅提高;當(dāng)退火溫度超過(guò)785℃后,馬氏體的體積分?jǐn)?shù)不再增加,但在冷卻階段生成的鐵素體體積分?jǐn)?shù)逐漸增加,相比原始鐵素體,新生鐵素體的含碳量較高,導(dǎo)致馬氏體的含碳量下降,抗拉強(qiáng)度也隨之降低。傳統(tǒng)低Si雙相鋼材料的抗拉強(qiáng)度為630MPa時(shí),伸長(zhǎng)率為23.0%。相比之下,退火溫度為785℃時(shí)高Si雙相鋼材料的綜合力學(xué)性能較高,抗拉強(qiáng)度為702MPa時(shí),伸長(zhǎng)率為25.5%,均高于傳統(tǒng)低Si雙相鋼。伴隨退火溫度的升高,試驗(yàn)鋼的屈強(qiáng)比未發(fā)生明顯變化,最大為0.58,最小為0.44。傳統(tǒng)低Si雙相鋼材料的屈強(qiáng)比為0.47,相比之下,除735℃退火外,雙相鋼的屈強(qiáng)比較低,因此其成型性能較好。這是由于鋼中的Si元素不僅可以降低鐵素體中C元素的含量,還可以對(duì)冷卻及時(shí)效過(guò)程中碳化物的析出起到抑制作用,使C元素聚集在奧氏體中;此外,由于新生鐵素體出現(xiàn)的無(wú)沉淀區(qū)降低了雙相鋼的屈服強(qiáng)度,因此其屈強(qiáng)比也隨之下降。
3結(jié)論
(1)在汽車(chē)用高Si雙相鋼在連續(xù)退火后,鐵素體晶界上均勻分布有島狀馬氏體和粒狀殘余奧氏體,這是由于Si元素在退火過(guò)程中促進(jìn)C元素的擴(kuò)散,在冷卻過(guò)程中抑制碳化物的析出造成的。(2)隨著退火溫度的升高,雙相鋼的抗拉強(qiáng)度呈現(xiàn)先升高后降低。當(dāng)退火溫度為785℃時(shí),高Si雙相鋼的綜合力學(xué)性能均高于傳統(tǒng)低Si雙相鋼,有利于改善雙相鋼的成型性能。
作者:莫樹(shù)懂 單位:廣西交通職業(yè)技術(shù)學(xué)院
1原材料性能試驗(yàn)分析
1.1水泥
試驗(yàn)所使用的水泥是江西省生產(chǎn)的萬(wàn)年青牌P.O42.5,其細(xì)度為1.23。
1.2砂
采用武夷山當(dāng)?shù)氐暮由埃猩?,?jí)配良好。
1.3粗骨料
采用武夷山當(dāng)?shù)禺a(chǎn)的碎石,表觀密度為2867kgm2,最大公稱(chēng)粒徑為40mm,級(jí)配良好。碎石的含水率小于0.2%。
1.4廢棄混凝土
廢棄混凝土集料(簡(jiǎn)稱(chēng)RG),是武夷山當(dāng)?shù)嘏f建筑物上拆下來(lái)的廢棄混凝土塊,經(jīng)人工破碎篩分、分級(jí),按一定的比例混合后,粒徑為5~40mm,級(jí)配良好。
1.5礦渣微粉
礦渣微粉是福建三鋼集團(tuán)龍海分公司生產(chǎn)的,比表面積為450m2kg。
1.6水
武夷山當(dāng)?shù)氐淖詠?lái)水。
1.7減水劑
選用福州君安建材有限公司生產(chǎn)的YS-A型混凝土高效能減水劑,減水率為15%。
2試驗(yàn)研究
2.1混凝土基準(zhǔn)配合比
根據(jù)《普通混凝土配合比設(shè)計(jì)規(guī)程》(JGJ55—2011)的要求,按照強(qiáng)度等級(jí)C35設(shè)計(jì)混凝土基準(zhǔn)配合比,水膠比為0.4,坍落度120mm,砂率取38%。
2.2礦渣微粉再生混凝土配合比
試驗(yàn)采用廢混凝土等質(zhì)量取代天然粗骨料,取代率分別為0,25%,50%,100%。在廢混凝土取代率試驗(yàn)的基礎(chǔ)上,摻入礦渣微粉等量取代水泥用量,取代率分別為0,30%,50%,70%。采用均勻設(shè)計(jì)法制定了16組試驗(yàn)方案。
2.3混凝土試件的制作
根據(jù)《普通混凝土力學(xué)性能試驗(yàn)方法標(biāo)準(zhǔn)》(GBT50081—2002)(以下簡(jiǎn)稱(chēng)《標(biāo)準(zhǔn)》)的規(guī)定,試塊采用150mm×150mm×150mm標(biāo)準(zhǔn)試模,按照試驗(yàn)方案制作成16組試塊,分別測(cè)試7,28,60d的抗壓強(qiáng)度和工作性能,每次確定的強(qiáng)度值取3個(gè)數(shù)據(jù)的平均值,故每組按照7,28,60d的養(yǎng)護(hù)齡期分別制作9個(gè)試塊,總計(jì)144個(gè)試塊。2.4流動(dòng)性測(cè)試根據(jù)《普通混凝土拌合物性能試驗(yàn)方法標(biāo)準(zhǔn)》(GBT50080—2002)進(jìn)行坍落度試驗(yàn),測(cè)定不同組別混凝土拌合物的流動(dòng)性。2.5抗壓強(qiáng)度試驗(yàn)根據(jù)《標(biāo)準(zhǔn)》進(jìn)行抗壓強(qiáng)度試驗(yàn),使用微機(jī)控制電液伺服壓力試驗(yàn)機(jī)(HCT306A)進(jìn)行試驗(yàn),以0.5~0.8MPas勻速加壓,試驗(yàn)分7,28,60d共3次進(jìn)行,每次試驗(yàn)3個(gè)試塊,抗壓強(qiáng)度結(jié)果取平均值。
3試驗(yàn)結(jié)果分析
3.1流動(dòng)性影響分析
以礦渣微粉和廢混凝土摻量為變量,通過(guò)測(cè)試不同方案再生混凝土的坍落度值,得出對(duì)再生混凝土流動(dòng)性的影響規(guī)律。當(dāng)?shù)V渣微粉取代率不變時(shí),隨著廢混凝土摻量的增加,再生混凝土的坍落度呈現(xiàn)出比較明顯的降低趨勢(shì);當(dāng)摻入礦渣微粉后,再生混凝土的坍落度均有所提高;當(dāng)廢混凝土取代率不變時(shí),隨著礦渣微粉取代率的增加,再生混凝土的坍落度也有一定程度的提高。研究結(jié)果表明:廢混凝土在破碎過(guò)程中產(chǎn)生很多的顆粒棱角,使其具有表面粗糙、孔隙率大和吸水性好的特征[5],進(jìn)行混凝土拌制時(shí),在水膠比不變的前提下,由于廢混凝土自身要吸收水分,減少了實(shí)際用于拌合混凝土的水量,導(dǎo)致混凝土的流動(dòng)性變差。而礦渣微粉是細(xì)微球狀體,其顆粒直徑比水泥細(xì),且表面光滑,可以起到填充水泥顆??障兜淖饔茫椅啃。?]。因此,在水泥剛開(kāi)始水化時(shí),礦渣微粉包圍著水泥顆粒,起到了減水劑的作用,降低了水化速度,提高了混凝土拌合物的流動(dòng)性。
3.2抗壓強(qiáng)度影響分析
本試驗(yàn)以礦渣微粉和廢混凝土摻量為變量,通過(guò)測(cè)試不同方案混凝土的抗壓強(qiáng)度值,得出每組方案對(duì)不同齡期混凝土抗壓強(qiáng)度的影響規(guī)律?;炷?d的抗壓強(qiáng)度的變化規(guī)律:在廢混凝土取代率不變時(shí),當(dāng)摻入礦渣微粉后,其抗壓強(qiáng)度降低。這是由于礦渣微粉的水化速度慢,當(dāng)水泥用量隨著礦渣微粉的摻入而減少時(shí),混凝土的早期強(qiáng)度會(huì)出現(xiàn)明顯降低?;炷?8d和60d的抗壓強(qiáng)度的變化規(guī)律:再生混凝土后期抗壓強(qiáng)度相比7d的抗壓強(qiáng)度高,能夠達(dá)到設(shè)計(jì)強(qiáng)度等級(jí)C35。當(dāng)廢混凝土取代一定量天然骨料,混凝土強(qiáng)度有一定程度地提高,但隨廢混凝土取代率的提高,抗壓強(qiáng)度呈下降的趨勢(shì)。當(dāng)取代率超過(guò)50%時(shí),混凝土的抗壓強(qiáng)度下降較快;當(dāng)再生骨料取代率為50%時(shí),摻入適量礦渣微粉,使再生混凝土的流動(dòng)性得以改善,抗壓強(qiáng)度影響不大,28d均能達(dá)到35MPa;當(dāng)再生混凝土中礦渣微粉摻量為50%時(shí),其抗壓強(qiáng)度隨著廢混凝土取代率的增加而提高,28d最高達(dá)到40MPa。分析表明:廢混凝土不僅棱角多,而且表面粗糙,具有粘結(jié)面較好、界面粘結(jié)強(qiáng)度較高的特性[7];另外,由于廢混凝土的吸水性強(qiáng),遇水后能很快濕潤(rùn),促使其表面的許多微裂縫的立刻吸入水泥顆粒,使水化更加充分,形成致密的界面結(jié)構(gòu),在一定程度上補(bǔ)償了廢混凝土強(qiáng)度較低的缺陷;同時(shí),礦渣微粉的細(xì)度比水泥顆粒細(xì),起到了很好的填充作用,改善了再生混凝土的孔隙結(jié)構(gòu),使孔隙率降低,形成了密實(shí)充填結(jié)構(gòu)[8];此外,由于廢混凝土的吸水率較高,降低了混凝土的有效水膠比,提高了再生混凝土的抗壓強(qiáng)度。
4結(jié)語(yǔ)
當(dāng)再生混凝土中礦渣微粉摻量為50%,采用水泥標(biāo)號(hào)為P.O42.5時(shí),其抗壓強(qiáng)度隨著廢混凝土取代率的增加而提高,28d最高達(dá)到40MPa。由此可見(jiàn),礦渣微粉再生骨料混凝土既能節(jié)約資源,又能消耗大量的建筑垃圾,對(duì)于減輕環(huán)境污染十分有效。隨著科學(xué)技術(shù)的快速發(fā)展,礦渣微粉再生骨料混凝土一定會(huì)成為可持續(xù)發(fā)展的綠色材料。
作者:谷艷玲 單位:武夷學(xué)院土木工程與建筑學(xué)院
1試驗(yàn)原材料及配合比
1.1試驗(yàn)原材料
水泥:采用P.O42.5水泥,其主要性能見(jiàn)表1。石灰石粉:密度2700kg/m3,需水量比95%,其化學(xué)成分見(jiàn)表2。細(xì)骨料:采用天然河砂,表觀密度2640kg/m3,細(xì)度模數(shù)2.77。粗骨料:采用天然卵石,粒徑分別為5~20mm、20~40mm,表觀密度2670kg/m3,壓碎指標(biāo)6.6%。外加劑:采用Gk—4A固狀緩凝高效減水劑和GK—9A固狀引氣劑。
1.2試驗(yàn)配合比
試驗(yàn)采用內(nèi)摻法,以石灰石粉替代不同摻量的水泥然后按表3的配合比成型混凝土試件。試驗(yàn)以R0為基準(zhǔn)配比,通過(guò)改變石灰石粉摻量,研究石灰石粉對(duì)碾壓混凝土工作性能、力學(xué)性能和耐久性能的影響。
2石灰石粉對(duì)碾壓混凝土工作性能的影響
碾壓混凝土工作性能按《水工混凝土試驗(yàn)規(guī)程》(DL/T5150—2000)進(jìn)行測(cè)試。摻入石灰石粉后,碾壓混凝土拌和物的VC值出現(xiàn)降低的趨勢(shì),但隨著摻入量的增加降低幅度減小。不摻石灰石粉時(shí)R0配比的VC值為8s,當(dāng)摻入石灰石粉時(shí),配比R1、R2、R3、R4都降至5s以?xún)?nèi),說(shuō)明石灰石粉具有固體減水劑的作用,適當(dāng)?shù)氖沂蹖?duì)改善碾壓土的工作性能有益。VC值的大小是決定碾壓混凝土可碾性和層間結(jié)合技術(shù)的關(guān)鍵。隨著石灰石粉的加入,碾壓混凝土液化泛漿時(shí)間縮短有利于碾壓混凝土的層間結(jié)合,這主要是由于石灰石粉的密度低于水泥密度。采用等量替代法大大提高了碾壓混凝土中漿量的體積,同時(shí)提高了漿砂比。同時(shí),把混凝土看作是一個(gè)連續(xù)的顆粒堆積體,石灰石粉中的細(xì)顆粒對(duì)碾壓混凝土起到級(jí)配微調(diào)作用,從而改善碾壓混凝土的工作性能[3]。
3石灰石粉對(duì)碾壓混凝土力學(xué)性能的影響
碾壓混凝土抗壓強(qiáng)度、靜力抗壓彈性模量和極限拉伸值按《水工混凝土試驗(yàn)規(guī)程》(DL/T5150—2001)進(jìn)行測(cè)試。配比編號(hào)為R1和R2的7d強(qiáng)度比基準(zhǔn)配比R0強(qiáng)度高,28d時(shí)雖仍有提高但提高幅度不太明顯,到了90d強(qiáng)度基本接近;配比編號(hào)R3和R4的早期強(qiáng)度和后期強(qiáng)度均比基準(zhǔn)配比強(qiáng)度低。說(shuō)明:當(dāng)石灰石粉的摻量不超過(guò)20%時(shí)可提高碾壓混凝土早期抗壓強(qiáng)度,對(duì)碾壓混凝土后期強(qiáng)度無(wú)不利影響;當(dāng)石灰石粉的摻量超過(guò)20%時(shí),隨著其摻量加大,碾壓混凝土各個(gè)齡期強(qiáng)度降低。同時(shí),從表4中可知,隨著石灰石粉摻量的增加,碾壓混凝土的靜力抗壓彈性模量出現(xiàn)先降低后增加的趨勢(shì),而碾壓混凝土的極限拉伸值則出現(xiàn)與其相反的趨勢(shì),即先增加后降低。這表明適當(dāng)石灰石粉摻量對(duì)防止碾壓混凝土壩的裂縫是十分有利的?;炷量梢砸暈檫B續(xù)的顆粒堆積體,石灰石粉的細(xì)度比水泥小,石灰石粉的細(xì)粉分散在水泥顆粒之間,起分散劑的作用,可以對(duì)碾壓混凝土進(jìn)行級(jí)配微調(diào),使碾壓混凝土內(nèi)部更加密實(shí)。同時(shí)在水化早期,有大量的網(wǎng)狀C—S—H生成,石灰石粉的支點(diǎn)咬合作用有利于水化物產(chǎn)生,從而加速了C3S的水化[4],這種作用在早期十分明顯,故一定量的石灰石粉可提高碾壓混凝土的早期強(qiáng)度,但隨著摻量的增加,混凝土內(nèi)部參與水化反應(yīng)的水泥越來(lái)越少,從而影響了碾壓混凝土的強(qiáng)度。由于石灰石粉的等量替代提高了碾壓混凝土的漿砂比,降低了碾壓混凝土的VC值,從而起到提高碾壓混凝土極限拉伸值、降低碾壓混凝土靜力抗壓彈性模量的效果。
4石灰石粉對(duì)碾壓混凝土抗?jié)B性能的影響
碾壓混凝土抗?jié)B性能按《水工混凝土試驗(yàn)規(guī)程》(DL/T5150—2001)采用逐級(jí)加壓法進(jìn)行測(cè)試,抗?jié)B等級(jí)以每組6個(gè)試件中2個(gè)出現(xiàn)滲水時(shí)的最大水壓力表示。抗?jié)B等級(jí)按公式:W=10H-1計(jì)算。分別對(duì)5組試件90d齡期進(jìn)行抗?jié)B實(shí)驗(yàn)得出如下結(jié)果:R0試件的抗?jié)B等級(jí)大于W10;R1、R2、R3、R4試件的抗?jié)B等級(jí)均大于W12。碾壓混凝土的抗?jié)B性能是指碾壓混凝土抵抗壓力水滲透的能力,碾壓混凝土的密實(shí)程度決定了其抗?jié)B性能的高低,隨著石灰石粉的摻入,碾壓混凝土抗?jié)B性能有一定程度的提高,這是由于石灰石粉的摻入起到了微填充的作用,阻斷了碾壓混凝土內(nèi)部的毛細(xì)通道,提高了碾壓混凝土的密實(shí)度,進(jìn)而提高了碾壓混凝土的抗?jié)B性能。
5石灰石粉對(duì)碾壓混凝土抗凍融性能的影響
碾壓混凝土工作性能按《水工混凝土試驗(yàn)規(guī)程》(DL/T5150—2001)進(jìn)行測(cè)試。不同石灰石粉摻量的碾壓混凝土90d齡期200次快速凍融結(jié)果。隨著石灰石粉摻量的增加,碾壓混凝土的質(zhì)量損失率增加,相對(duì)動(dòng)彈模量降低。當(dāng)石灰石粉摻量不超過(guò)20%時(shí),碾壓混凝土試件可達(dá)到200次凍融循環(huán);當(dāng)摻量達(dá)到30%時(shí),只能達(dá)到150次凍融循環(huán);當(dāng)摻量達(dá)到40%時(shí),只能勉強(qiáng)達(dá)到100次凍融循環(huán)。碾壓混凝土抗凍性能的好壞與碾壓混凝土用原材料、碾壓混凝土內(nèi)部的孔結(jié)構(gòu)及碾壓混凝土密實(shí)程度等因素有關(guān)系。目前常用的方法是提高碾壓混凝土的密實(shí)度和摻加引氣劑。由于石灰石粉中的細(xì)粉顆粒對(duì)碾壓混凝土有級(jí)配微調(diào)的作用,在一定程度上提高了碾壓混凝土的密實(shí)度[5-6],但隨著石灰石粉摻量的增加,碾壓混凝土中的含量明顯降低,導(dǎo)致其抗凍性能降低。所以,在碾壓混凝土中摻入適量石灰石粉,并合理調(diào)整引氣劑的摻量,仍可保證碾壓混凝土具備一定的抗凍融循環(huán)能力。
6結(jié)論
a.一定摻量的石灰石粉具有降低碾壓混凝土VC值、改善碾壓混凝土的工作性能的作用。b.當(dāng)石灰石粉的摻量不超過(guò)20%時(shí),可提高碾壓混凝土早期抗壓強(qiáng)度,對(duì)碾壓混凝土后期強(qiáng)度無(wú)不利影響。當(dāng)摻量超過(guò)20%時(shí)嚴(yán)重影響碾壓混凝土的抗壓強(qiáng)度。c.適當(dāng)摻量的石灰石粉具有提高碾壓混凝土極限拉伸值、降低碾壓混凝土靜力抗壓彈性模量的作用,對(duì)防止產(chǎn)生碾壓混凝土壩裂縫十分有利。d.石灰石粉的加入對(duì)碾壓混凝土的抗?jié)B性能無(wú)不利影響。e.石灰石粉的過(guò)量加入會(huì)大大降低碾壓混凝土的抗凍性能,但若摻量合理并適當(dāng)調(diào)整引氣劑的摻量,碾壓混凝土仍具有一定的抵抗凍融循環(huán)的能力。石灰石粉作為一種新型摻和料,在碾壓混凝土中的應(yīng)用顯得尤為重要,其合理利用具有廣闊的應(yīng)用前景和良好的經(jīng)濟(jì)效益,符合變廢為寶、節(jié)約資源、保護(hù)環(huán)境的可持續(xù)發(fā)展的思路。
作者:趙哲 單位:石家莊滹沱新區(qū)投資開(kāi)發(fā)有限公司
1有限元模型建立
對(duì)模型作如下假設(shè):基體是連續(xù)相,填料粒子是分散的;填料粒子具有均勻性和周期性;填料添加比例為5%。根據(jù)假設(shè),建立反映不同填料粒子分布形式的有限元模型。實(shí)驗(yàn)所用材料為建筑工業(yè)用X90管線(xiàn)鋼,其化學(xué)成分如表1所示。對(duì)真空脫氣工藝冶煉后的工業(yè)用鋼連鑄坯料進(jìn)行軋制。采用MULPIC層流冷卻設(shè)備對(duì)矯正后的軋制鋼板進(jìn)行熱處理。并依據(jù)多相組織調(diào)控機(jī)理對(duì)層流冷卻設(shè)備進(jìn)行參數(shù)設(shè)置,試驗(yàn)板材尺寸為18mm×3000mm×12000mm。對(duì)試驗(yàn)鋼板的軋制表面、沿寬度方面的截面和沿長(zhǎng)度方向的截面分別取樣,進(jìn)行打磨和拋光處理。其中所使用的金相腐蝕液為3.5%的硝酸酒精溶液。采用Axiovert-200MAT型光學(xué)顯微鏡(OM)和FEIQuanta600型掃描電鏡(SEM)對(duì)試驗(yàn)鋼組織進(jìn)行觀察;使用H-800型投射電鏡(TEM)對(duì)雙噴薄后的試樣進(jìn)行微觀形貌的觀察;采用GenesisXM2對(duì)實(shí)驗(yàn)樣品進(jìn)行能譜分析(EDS)。
2試驗(yàn)結(jié)果及分析
2.1X90鋼的組織分析
熱處理前試驗(yàn)鋼板厚度中層縱截面處的微觀組織??梢园l(fā)現(xiàn),試驗(yàn)鋼的原始奧氏體組織為長(zhǎng)50.0~65.0μm,寬20.0μm的長(zhǎng)條狀扁平形晶粒,并沿著鋼板軋制的方向分布。同時(shí)在其晶界處出現(xiàn)大量多邊形的鐵素體組織,尺寸范圍為3.0~7.0μm。由于基體的相變溫度受到鋼內(nèi)高能奧氏體晶粒的影響,因此隨著奧氏體晶粒的長(zhǎng)大,相變驅(qū)動(dòng)力增加,促進(jìn)相變發(fā)生。同時(shí),生成的鐵素體的力學(xué)性能、晶粒大小及相變過(guò)程中的動(dòng)態(tài)也與原始奧氏體晶粒尺寸相關(guān)。在工程生產(chǎn)實(shí)際中,可以采用細(xì)化奧氏體晶粒尺寸的辦法,達(dá)到增加其形變量和降低形變溫度,優(yōu)化X90管線(xiàn)鋼材料的力學(xué)性能。與X70管線(xiàn)鋼不同,X90管線(xiàn)鋼的主要組織為粒狀和板條的貝氏體、多邊形的鐵素體以及殘留M/A。圖2為試驗(yàn)鋼不同位置光學(xué)和掃描電鏡分析??梢园l(fā)現(xiàn),試驗(yàn)鋼的基體組織為貝氏體、鐵素體以及M/A構(gòu)成的多相組織。準(zhǔn)多邊形鐵素體在橫、縱截面的試樣中沿軋制方向呈帶狀分布。這是由于過(guò)冷處理增加了奧氏體晶界能量,促使鐵素在軋后空冷過(guò)程中形核、生長(zhǎng);經(jīng)擠壓后,試驗(yàn)鋼中貝氏體相互交錯(cuò)且取向不同,增大過(guò)冷處理的冷卻速率不利于增加粒狀貝氏體及M/A的數(shù)量。終軋厚度為18mm的試驗(yàn)鋼板透射電鏡分析如圖3所示。其中,粒狀貝氏體和板條貝氏體分布在準(zhǔn)多邊形鐵素體周?chē)0鍡l狀貝氏體是在中低溫的轉(zhuǎn)變溫度下制備得到的,其寬度為0.5μm,位錯(cuò)密度高,可提高鋼強(qiáng)度。在試驗(yàn)鋼板條束間隙中發(fā)現(xiàn)M/A相,該相在TEM圖片中呈白色或黑色條狀,如圖3(d)和3(e)所示。另外,由于試驗(yàn)鋼添加了0.09%的Nb元素作為晶粒細(xì)化劑,因此X90鋼的晶粒得到了一定程度的細(xì)化。這是由于Nb可以抑制奧氏體晶粒的生長(zhǎng)。
2.2力學(xué)性能分析
試驗(yàn)鋼不同位置試樣的力學(xué)性能測(cè)試結(jié)果如表2所示。可知,軋制鋼板的最高屈服強(qiáng)度為653MPa,最低為609MPa;抗拉強(qiáng)度為713~723MPa;最大的屈強(qiáng)比為0.89。在低溫的抗沖擊實(shí)驗(yàn)中,DWTT重錘沖擊實(shí)驗(yàn)的剪切面積不小于80%,沖擊做功的范圍在213~247J的范圍內(nèi)。X90第三代管線(xiàn)鋼的具有較低的屈強(qiáng)比及較高的延展性能,可減少裂紋和開(kāi)裂的產(chǎn)生,增加其在應(yīng)用過(guò)程中的安全性能。
3結(jié)論
(1)建筑用X90第三代管線(xiàn)鋼組織由板條和粒狀的貝氏體、M/A以及準(zhǔn)多邊形的鐵素體的多相組織構(gòu)成。低密度的準(zhǔn)多邊形鐵素體能夠提高鋼基體的韌性;含Nb析出物可抑制位錯(cuò)的滑移和擴(kuò)展;夾雜在位錯(cuò)之中的極硬M/A可以提高鋼的強(qiáng)度。(2)經(jīng)熱處理后,試驗(yàn)鋼具有較低的屈強(qiáng)比,較高的延展性能,能有效減少裂紋和開(kāi)裂的產(chǎn)生,提高材料的安全性能。
作者:申喆 單位:焦作大學(xué)
1實(shí)驗(yàn)方法
1.1合金成分
為使合金具備較高的抗拉強(qiáng)度、良好的充型能力及較高的耐磨性等性能,選擇硅含量為18%。實(shí)際生產(chǎn)中,常將含鐵量超過(guò)2.0%的回爐料,做廢鋁處理或給壓鑄廠回用,為增加高鐵鋁合金的回收利用率,同時(shí)保證良好的工藝性能和使用性能,將加入鐵含量定為3%。根據(jù)文獻(xiàn)報(bào)道[1-2],高鐵鋁硅合金中錳的最佳添加量存在差異,現(xiàn)有報(bào)道主要集中在w(Mn)/w(Fe)=0.5~1.1,錳和鐵含量相同時(shí)對(duì)高鐵含量鋁硅合金中的富鐵相具有較好的中和效果,因此選錳加入量為3%(即w(Mn)/w(Fe)=1.0)。有資料表明[3-4],隨著銅含量增加,合金密度和熱裂傾向增大,耐腐蝕性和鑄造性能降低,根據(jù)合金的種類(lèi)和用途的不同,所選銅的含量不一樣,銅的含量取5%。
1.2熱處理工藝選擇
根據(jù)相關(guān)文獻(xiàn)[5],T6處理對(duì)于鋁合金效果最好,即固溶處理后再進(jìn)行人工時(shí)效。該熱處理工藝可使高溫時(shí)出現(xiàn)的富鐵相擴(kuò)散于基體中。人工時(shí)效可使富鐵相均勻化。固溶溫度選擇525℃,保溫時(shí)間4h,淬火采用水介質(zhì),溫度為70~80℃的水。人工時(shí)效選擇溫度180℃,保溫5h。
2試驗(yàn)結(jié)果與分析
2.1抗拉強(qiáng)度檢測(cè)方法與數(shù)據(jù)
零件試樣按GB/T228-2010《金屬材料拉伸試驗(yàn)室溫試驗(yàn)方法》規(guī)定尺寸加工,在電子萬(wàn)能試驗(yàn)機(jī)上進(jìn)行拉伸試驗(yàn),高鐵含量的鋁硅合金在加入一定量的錳后性能有所提升,但提升幅度較小(抗拉強(qiáng)度由118MPa提升到135.2MPa,提升幅度為14.58%),不足以消除鐵元素對(duì)合金的影響。在加入錳的基礎(chǔ)上,加入銅后合金性能有較大提升(抗拉強(qiáng)度由135.2MPa提升到168.8MPa,提升幅度為24.85%),基本已經(jīng)能夠消除鐵元素帶來(lái)的不利影響。合金經(jīng)過(guò)T6熱處理后,可以使性能再次提升到193.1MPa,相對(duì)于不含鐵的鋁硅合金(Al-18Si)抗拉強(qiáng)度提升28.73%,有利于擴(kuò)大合金使用范圍,這對(duì)鋁硅合金的回收再利用具有重大意義。
2.2合金SEM及EDS分析
圖1為Al-18Si-3Fe-xMn合金中主要相的SEM形貌。圖1(a)為未加錳時(shí)即Al-18Si-3Fe中長(zhǎng)條狀和細(xì)長(zhǎng)的針條狀富鐵相的形貌,含鋁、硅、鐵分別為65.79%、21.42%和12.79%,不含錳。圖1(b)和圖1(c)為Al-18Si-3Fe-3Mn中富鐵相形貌。圖1(b)含鋁0.85%,含硅99.15%,不含鐵和錳。圖1(c)含鋁、硅、鐵錳分別為64.77%、18.51%、8.68%和8.05%。當(dāng)錳含量為零時(shí),即Al-18%Si-3Fe合金中富鐵相的組成元素為鋁、硅、鐵,可認(rèn)為這些相為三元富鐵相。當(dāng)錳含量為3%時(shí),富鐵相組成元素為鋁、硅、鐵、錳,可認(rèn)為這些相為四元富鐵相。圖中淺灰色的相為初生硅。Al-18Si-3Fe-3Mn-5Cu合金熱處理前后主要相的SEM形貌和微區(qū)成分分析的位置,圖2(a)含鋁75.65%、銅24.35%,圖2(b)含鋁78.34%、銅21.66%。圖2(a)中白色珊瑚狀組織和圖2(b)中白色組織是鋁和銅組成的一種物相,鋁和銅的原子比例分別為3.11和3.62,結(jié)合Al-Cu二元合金相圖可以判定為Al2Cu相,雖然實(shí)際測(cè)得鋁銅比大于2∶1,這是因?yàn)槭艿交w中α-Al的干擾和能譜儀電子束聚焦能力有限的影響。從圖2可知,富銅相是以富鐵相為核心方式析出和(Al+Al2Cu)共晶形式析出兩種方式同時(shí)進(jìn)行,這與文獻(xiàn)[6]記載,當(dāng)銅的質(zhì)量分?jǐn)?shù)大于1%時(shí)的析出方式吻合。從圖2(b)中存在富銅相可以得知,部分富銅相尺寸較大,固溶處理并不能將其完全溶解。
2.3鑄態(tài)組織結(jié)構(gòu)觀察與分析
從圖3(a)和圖3(b)可以觀察到,Al-18Si合金中加入3%的鐵后,出現(xiàn)粗大的雙錐狀富鐵相,這種富鐵相一般稱(chēng)為α鐵相,雙錐狀富鐵相對(duì)合金基體的割裂作用非常明顯(合金強(qiáng)度從150MPa下降到118MPa)。從圖3(c)可以觀察到,在富鐵含量的鋁硅合金中加入3%錳可使富鐵相和初生硅得到細(xì)化,富鐵相形態(tài)由雙錐狀轉(zhuǎn)變?yōu)槿~狀、四葉狀、塊狀、田字狀和塊狀(即β相)。通過(guò)對(duì)相關(guān)文獻(xiàn)分析[7-8],α鐵相和β鐵相都是通過(guò)δ高溫鐵相和剩余液相發(fā)生包晶反應(yīng)生成,α鐵相也可以通過(guò)包晶反應(yīng)轉(zhuǎn)變?yōu)棣孪?。在平衡凝固過(guò)程中,δ高溫鐵相先析出。非平衡凝固組織中出現(xiàn)δ高溫鐵相,是由于在較大冷卻速度下,δ高溫鐵相向β鐵相的包晶反應(yīng)變得困難,而不是較大的冷卻速度抑制了β鐵相的形核生長(zhǎng)。在高溫區(qū),α鐵相和β鐵相分別通過(guò)包晶反應(yīng)轉(zhuǎn)變?yōu)棣妈F相,當(dāng)冷卻速度非常大時(shí),包晶反應(yīng)難以進(jìn)行,而使δ高溫相保留至室溫。錳的加入,使α相從準(zhǔn)穩(wěn)定相轉(zhuǎn)變?yōu)榉€(wěn)定相,L+αβ的包晶反應(yīng)不再發(fā)生,L+δβ的包晶反應(yīng)也受到抑制,L+δα的包晶反應(yīng)受到促進(jìn)。因富鐵相由α鐵相轉(zhuǎn)變?yōu)棣孪?,以及晶粒的?xì)化,合金的抗拉強(qiáng)度得到一定提升(從118MPa提升到135.2MPa)。從圖3(d)可以看到,在富鐵含量的鋁硅合金中加入3%錳的基礎(chǔ)上加入5%銅后,合金中富鐵相形態(tài)變化不大,Al2Cu相在富鐵相周?chē)龀?。是由于Al2Cu相包裹了富鐵相,從而減小了富鐵相對(duì)合金基體的割裂作用,使得合金抗拉強(qiáng)度得到提高(從135.2MPa提升到168.8MPa)。Al-18Si-3Fe-3Mn-5Cu合金經(jīng)過(guò)T6熱處理后,富鐵相和初生硅相邊角被鈍化,鑄態(tài)下的CuAl2在固溶處理過(guò)程中,重新溶解入基體中,形成過(guò)飽和固溶體。此時(shí),快速淬入70~90℃的熱水中,溶質(zhì)的擴(kuò)散和重新分配來(lái)不及進(jìn)行,CuAl2的形核和長(zhǎng)大無(wú)法實(shí)現(xiàn),從而得到過(guò)飽和的單相α固溶體。從圖4可以看到,固溶處理后銅元素的分布明顯均勻化,銅元素在單相α固溶體中有較大的過(guò)飽和度,共格界面處的基體晶格產(chǎn)生畸變,對(duì)基體起到強(qiáng)化作用。同時(shí)認(rèn)為,由于高溫下原子擴(kuò)散作用增強(qiáng),熱處理后富鐵相周邊剩余的CuAl2相與富鐵相結(jié)合更緊密,CuAl2相與基體結(jié)合部分更圓滑,因此更有利于消除富鐵相對(duì)基體的割裂影響,提高合金強(qiáng)度。通過(guò)兩種方式對(duì)合金的強(qiáng)化,合金的力學(xué)性能得到較大提升(從168.8MPa提升到193.1MPa)。
3結(jié)論
Al-18Si-3Fe合金中加入3%錳后,富鐵相形態(tài)得到改善,能夠小幅度提升(抗拉強(qiáng)度幅度為14.58%)高鐵含量鋁硅合金強(qiáng)度,但不能完全消除鐵元素帶來(lái)的不利影響。Al-18Si-3Fe-3Mn合金加入5%銅后,析出的Al2Cu相包裹富鐵相,減小富鐵相對(duì)合金基體的割裂作用,使得合金抗拉強(qiáng)度得到提高(從135.2MPa提升到168.8MPa)。Al-18Si-3Fe-3Mn-5Cu經(jīng)過(guò)T6處理后,銅元素在單相α固溶體中形成較大的過(guò)飽和度,對(duì)基體起到強(qiáng)化作用,同時(shí)由于高溫下原子擴(kuò)散作用增強(qiáng),熱處理后富鐵相周邊剩余的CuAl2相與富鐵相結(jié)合更緊密,CuAl2相與基體結(jié)合部分更圓滑。通過(guò)兩種方式,合金的力學(xué)性能得到較大提升(從168.8MPa提升到193.1MPa),優(yōu)于不含鐵Al-22Si合金性能,實(shí)現(xiàn)鋁硅合金的有效回收利用。
作者:李林鑫 單位:四川化工職業(yè)技術(shù)學(xué)院